×

On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: two linearisable hierarchies. (English) Zbl 1284.35021

Summary: We discuss nonlocal symmetries and nonlocal conservation laws that follow from the systematic potentialisation of evolution equations. Those are the Lie point symmetries of the auxiliary systems, also known as potential symmetries. We define higher-degree potential symmetries which then lead to nonlocal conservation laws and nonlocal transformations for the equations. We demonstrate our approach and derive second degree potential symmetries for the Burgers’ hierarchy and the Calogero-Degasperis-Ibragimov-Shabat hierarchy.

MSC:

35A30 Geometric theory, characteristics, transformations in context of PDEs
35G20 Nonlinear higher-order PDEs
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anco S., European J. Appl. Math. 13 pp 567–
[2] Bluman G. W., Symmetries and Differential Equations (1989) · Zbl 0698.35001
[3] Bluman G. W., J. Math. Phys. 29 pp 806– · Zbl 0669.58037 · doi:10.1063/1.527974
[4] Calogero F., J. Math. Phys. 28 pp 538– · Zbl 0663.35006 · doi:10.1063/1.527639
[5] Calogero F., J. Math. Phys. 22 pp 23– · Zbl 0485.35076 · doi:10.1063/1.524750
[6] Euler M., Theoretical and Mathematical Physics 159 pp 770– · Zbl 1179.35265 · doi:10.1007/s11232-009-0065-8
[7] Euler M., Stud. in Appl. Math. 111 pp 315– · Zbl 1141.37351 · doi:10.1111/1467-9590.t01-1-00236
[8] Euler N., J. Nonlinear Math. Phys. 8 pp 342– · Zbl 0997.35093 · doi:10.2991/jnmp.2001.8.3.3
[9] Euler N., J. Nonlinear Math. Phys. 16 pp 93– · Zbl 1362.35259 · doi:10.1142/S1402925109000340
[10] Fokas A. S., Stud. Appl. Math. 77 pp 253–
[11] Fokas A. S., Lett. Nuovo Cimento 28 pp 299– · doi:10.1007/BF02798794
[12] Ibragimov N. H., Funct. Anal. Appl. 14 pp 313– · Zbl 0462.35049 · doi:10.1007/BF01078315
[13] Krasil’shchik I. S., Acta Appl. Math. 2 pp 79– · Zbl 0547.58043 · doi:10.1007/BF01405492
[14] DOI: 10.1007/978-1-4684-0274-2 · doi:10.1007/978-1-4684-0274-2
[15] Petersson N., Stud. Appl. Math. 112 pp 201– · Zbl 1141.37354 · doi:10.1111/j.0022-2526.2004.01511.x
[16] Rogers C., Bäcklund Transformations and Their Applications (1982) · Zbl 0492.58002
[17] Sergyeyev A., J. Nonlinear Math. Phys. 10 pp 78– · Zbl 1020.35106 · doi:10.2991/jnmp.2003.10.1.6
[18] Sokolov V. V., Math. Phys. Rev. 4 pp 221–
[19] Vinogradov A. M., Sov. Math. Dokl. 29 pp 337–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.