×

The meshless Galerkin boundary node method for Stokes problems in three dimensions. (English) Zbl 1242.76244

Summary: The Galerkin boundary node method (GBNM) is a boundary only meshless method that combines an equivalent variational formulation of boundary integral equations for governing equations and the moving least-squares (MLS) approximations for generating the trial and test functions. In this approach, boundary conditions can be implemented directly and easily despite of the fact that the MLS shape functions lack the delta function property. Besides, the resulting formulation inherits the symmetry and positive definiteness of the variational problems. The GBNM is developed in this paper for solving three-dimensional stationary incompressible Stokes flows in primitive variables. The numerical scheme is based on variational formulations for the first-kind integral equations, which are valid for both interior and exterior problems simultaneously. A rigorous error analysis and convergence study of the method for both the velocity and the pressure is presented in Sobolev spaces. The capability of the method is also illustrated and assessed through some selected numerical examples.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)

Software:

BEAN
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Girault, Finite Element Approximation of the Navier-Stokes Equations (1979) · Zbl 0413.65081 · doi:10.1007/BFb0063447
[2] Brezzi, Mixed and Hybrid Finite Element Methods (1991) · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[3] Walter, Coupling of finite element and boundary integral methods for a capsule in a Stokes flow, International Journal for Numerical Methods in Engineering 83 pp 829– (2010) · Zbl 1197.74187
[4] Dautray, Mathematical Analysis and Numerical Methods for Science and Technology, Integral Equations and Numerical Methods 4 (2000) · Zbl 0944.47002
[5] Zhu, Boundary Element Analysis (2009)
[6] Wendland, The boundary element method for three-dimensional Stokes flows exterior to an open surface, Mathematical and Computer Modelling 15 pp 19– (1991) · Zbl 0742.76055 · doi:10.1016/0895-7177(91)90021-X
[7] Reidinger, A symmetric boundary element method for the Stokes problem in multiple connected domains, Mathematical Methods in the Applied Sciences 26 pp 77– (2003) · Zbl 1137.76429 · doi:10.1002/mma.347
[8] Chen, A new method for Stokes problems with circular boundaries using degenerate kernel and Fourier series, International Journal for Numerical Methods in Engineering 74 pp 1955– (2008) · Zbl 1195.76278 · doi:10.1002/nme.2240
[9] Frangi, On the evaluation of damping in MEMS in the slip-flow regime, International Journal for Numerical Methods in Engineering 68 pp 1031– (2006) · Zbl 1127.76020 · doi:10.1002/nme.1749
[10] Liu, Fast Multipole Boundary Element Method-Theory and Applications in Engineering (2009) · doi:10.1017/CBO9780511605345
[11] Belytschko, Meshless methods: an overview and recent developments, Computer Methods in Applied Mechanics and Engineering 139 pp 3– (1996) · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[12] Li, Meshfree Particle Methods (2004)
[13] Liu, An Introduction to Meshfree Methods and their Programming (2005)
[14] Belytchko, Element free Galerkin methods, International Journal for Numerical Methods in Engineering 37 pp 229– (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[15] Lu, A new implementation of the element free Galerkin method, Computer Methods in Applied Mechanics and Engineering 113 pp 397– (1994) · Zbl 0847.73064 · doi:10.1016/0045-7825(94)90056-6
[16] Babuška, Generalized finite element methods: main ideas, results and perspectives, International Journal of Computational Methods 1 pp 67– (2004) · Zbl 1081.65107 · doi:10.1142/S0219876204000083
[17] Fries, The extended/generalized finite element method: an overview of the method and its applications, International Journal for Numerical Methods in Engineering 84 pp 253– (2010) · Zbl 1202.74169
[18] Duarte, H-p clouds-an h-p meshless method, Numerical Methods for Partial Differential Equations 12 pp 673– (1996) · Zbl 0869.65069 · doi:10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
[19] Sukumar, Natural neighbour Galerkin methods, International Journal for Numerical Methods in Engineering 50 pp 1– (2001) · Zbl 1082.74554 · doi:10.1002/1097-0207(20010110)50:1<1::AID-NME14>3.0.CO;2-P
[20] Aluru, Finite cloud method: a true meshless technique based on a fixed reproducing kernel approximation, International Journal for Numerical Methods in Engineering 50 pp 2373– (2001) · Zbl 0977.74078 · doi:10.1002/nme.124
[21] Onate, A finite point method in computational mechanics. Applications to convective transport and fluid flow, International Journal for Numerical Methods in Engineering 39 pp 3839– (1996) · Zbl 0884.76068 · doi:10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
[22] Mukherjee, The boundary node method for potential problems, International Journal for Numerical Methods in Engineering 40 pp 797– (1997) · Zbl 0885.65124 · doi:10.1002/(SICI)1097-0207(19970315)40:5<797::AID-NME89>3.0.CO;2-#
[23] Mukherjee, Boundary Methods: Elements, Contours, and Nodes (2005) · doi:10.1201/9781420027860
[24] Shrivastava, A fast boundary cloud method for 3D exterior electrostatic analysis, International Journal for Numerical Methods in Engineering 59 pp 2019– (2004) · Zbl 1170.78429 · doi:10.1002/nme.949
[25] Zhang, The hybrid boundary node method accelerated by fast multipole expansion technique for 3D potential problems, International Journal for Numerical Methods in Engineering 63 pp 660– (2005) · Zbl 1085.65115 · doi:10.1002/nme.1292
[26] Zhang, A boundary face method for potential problems in three dimensions, International Journal for Numerical Methods in Engineering 80 pp 320– (2009) · Zbl 1176.74212 · doi:10.1002/nme.2633
[27] Gu, Hybrid boundary point interpolation methods and their coupling with the element free Galerkin method, Engineering Analysis with Boundary Elements 27 pp 905– (2003) · Zbl 1060.74651 · doi:10.1016/S0955-7997(03)00045-6
[28] Liew, Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems, International Journal for Numerical Methods in Engineering 65 pp 1310– (2006) · Zbl 1147.74047 · doi:10.1002/nme.1489
[29] Li, A Galerkin boundary node method and its convergence analysis, Journal of Computational and Applied Mathematics 230 pp 314– (2009) · Zbl 1189.65291 · doi:10.1016/j.cam.2008.12.003
[30] Li, A Galerkin boundary node method for biharmonic problems, Engineering Analysis with Boundary Elements 33 pp 858– (2009) · Zbl 1244.65175 · doi:10.1016/j.enganabound.2008.11.002
[31] Li, Galerkin boundary node method for exterior Neumann problems, Journal of Computational Mathematics (2010) · Zbl 1240.76005 · doi:10.4208/jcm.1004-m2775
[32] Li, A Galerkin boundary node method for two-dimensional linear elasticity, CMES: Computer Modeling in Engineering and Sciences 45 pp 1– (2009) · Zbl 1357.74008
[33] Li, Adaptive methodology for the meshless Galerkin boundary node method, Engineering Analysis with Boundary Elements 35 pp 750– (2011) · Zbl 1259.65170 · doi:10.1016/j.enganabound.2011.01.003
[34] Li, A meshless Galerkin method for Stokes problems using boundary integral equations, Computer Methods in Applied Mechanics and Engineering 198 pp 2874– (2009) · Zbl 1229.76076 · doi:10.1016/j.cma.2009.04.009
[35] Li, Meshless analysis of two-dimensional Stokes flows with the Galerkin boundary node method, Engineering Analysis with Boundary Elements 34 pp 79– (2010) · Zbl 1244.76079 · doi:10.1016/j.enganabound.2009.05.009
[36] Li, Meshless Galerkin analysis of Stokes slip flow with boundary integral equations, International Journal for Numerical Methods in Fluids 61 pp 1201– (2009) · Zbl 1422.76047 · doi:10.1002/fld.1991
[37] Babuška, Quadrature for meshless methods, International Journal for Numerical Methods in Engineering 76 pp 1434– (2008) · Zbl 1195.65165 · doi:10.1002/nme.2367
[38] Liu, On a G space theory, International Journal of Computational Methods 6 pp 257– (2009) · Zbl 1264.74266 · doi:10.1142/S0219876209001863
[39] Liu, A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: part I theory, International Journal for Numerical Methods in Engineering 81 pp 1093– (2010)
[40] Liu, A theoretical study on the smoothed FEM (S-FEM) models: properties, accuracy and convergence rates, International Journal for Numerical Methods in Engineering 84 pp 1222– (2010) · Zbl 1202.74180 · doi:10.1002/nme.2941
[41] Krysl, Element-free Galerkin method: convergence of the continuous and discontinuous shape functions, Computer Methods in Applied Mechanics and Engineering 148 pp 257– (1997) · Zbl 0918.73125 · doi:10.1016/S0045-7825(96)00007-2
[42] Cheng, Error estimates for the finite point method, Applied Numerical Mathematics 58 pp 884– (2008) · Zbl 1145.65086 · doi:10.1016/j.apnum.2007.04.003
[43] Duarte, An hp adaptive method using clouds, Computer Methods in Applied Mechanics and Engineering 139 pp 237– (1996) · Zbl 0918.73328 · doi:10.1016/S0045-7825(96)01085-7
[44] Rabczuk, Adaptivity for structured meshfree particle methods in 2D and 3D, International Journal for Numerical Methods in Engineering 63 pp 1559– (2005) · Zbl 1145.74041 · doi:10.1002/nme.1326
[45] Chati, The meshless standard and hypersingular boundary node methods C applications to error estimation and adaptivity in three-dimensional problems, International Journal for Numerical Methods in Engineering 50 pp 2233– (2001) · Zbl 0988.74073 · doi:10.1002/nme.125
[46] Andrä, Integration of singular Galerkin-type boundary element integrals for 3D elasticity problems, Numerische Mathematik 76 pp 143– (1997) · Zbl 0879.73078 · doi:10.1007/s002110050257
[47] Sauter, Quadrature for hp-Galerkin BEM in R3, Numerische Mathematik 78 pp 211– (1997) · Zbl 0901.65069 · doi:10.1007/s002110050311
[48] Sutradhar, On hypersingular surface integrals in the symmetric Galerkin boundary element method: application to heat conduction in exponentially graded materials, International Journal for Numerical Methods in Engineering 62 pp 122– (2005) · Zbl 1087.80007 · doi:10.1002/nme.1195
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.