×

Modelling of hysteresis using Masing-Bouc-Wen’s framework and search of conditions for the chaotic responses. (English) Zbl 1221.70027

Summary: Hysteresis is simulated by means of internal variables. It is shown that Masing’s imitating mechanism of energy dissipation present in the differential equations of Bouc-Wen’s structure allows one to simulate hysteresis phenomena arising in very different fields. The constructed analytical models of different types of hysteresis loops are simple, allow one to reproduce major and minor loops and provide a high degree of agreement with experimental data. The models of such a structure are convenient for further investigation. Hysteretic systems under harmonic excitation described by models of such a structure may reveal chaotic behaviour. Using an effective algorithm based on the analysis of wandering trajectories, the evolution of regions of chaotic behaviour of oscillators with hysteresis is presented in various parametric planes. Substantial influence of a hysteretic dissipation value on the form and location of these regions, and also restraining and generating effects of the hysteretic dissipation on occurrence of chaos are ascertained. Conditions for pinched hysteresis are defined.

MSC:

70K05 Phase plane analysis, limit cycles for nonlinear problems in mechanics
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C55 Hysteresis for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Awrejcewicz J, Mosdorf R. Numerical analysis of some problems of chaotic dynamics, WNT, Warsaw, 2003 [in Polish].; Awrejcewicz J, Mosdorf R. Numerical analysis of some problems of chaotic dynamics, WNT, Warsaw, 2003 [in Polish].
[2] Awrejcewicz, J.; Dzyubak, L., Stick-slip chaotic oscillations in a quasi-autonomous mechanical system, Int J Nonlinear Sci Numer Simul, 4, 2, 155-160 (2003)
[3] Awrejcewicz, J.; Dzyubak, L., Regular and chaotic behavior exhibited by coupled oscillators with friction, Facta Universitatis, Ser Mech Autom Control Robot, 3, 14, 921-930 (2003) · Zbl 1065.74555
[4] Awrejcewicz, J.; Dzyubak, L.; Grebogi, C., A direct numerical method for quantifying regular and chaotic orbits, Chaos, Solitons Fract, 19, 503-507 (2004) · Zbl 1086.37044
[5] Mayergoyz, I. D., Mathematical models of hysteresis (1991), Springer: Springer Berlin · Zbl 0723.73003
[6] Visintin, A., Differential models of hysteresis (1994), Springer: Springer Berlin · Zbl 0820.35004
[7] Vestroni, F.; Noori, M., Hysteresis in mechanical systems – modelling and dynamic response, Int J Non-Linear Mech, 37, 1261-1459 (2002)
[8] Bernardini, D.; Rega, G., Thermomechanical modelling, nonlinear dynamics and chaos in shape memory alloys oscillators, Math Comput Model Dyn Syst, 11, 3, 291-314 (2005) · Zbl 1097.74528
[9] Kádár, G.; Szabó, G., Hysteresis modelling, J Magn Magn Mater, 215-216, 592-596 (2000)
[10] Kolsch, H.; Ottl, D., Simulation des mechanischen Verhaltens von Bauteilen mit statischer Hysterese, Forsch Ingenieurwes, 4, 66-71 (1993), [in Germany]
[11] Koltermann, P. I.; Righi, L. A., A modified Jiles method for hysteresis computation including minor loops, Physica B, 275, 233-237 (2000)
[12] Ktena, A.; Fotiadis, D. I., A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys, Physica B, 306, 84-90 (2001)
[13] Makaveev, D.; Dupre, L., Dynamic hysteresis modelling using feed-forward neural networks, J Magn Magn Mater, 254-255, 256-258 (2003)
[14] Ortin, J.; Delaey, L., Hysteresis in shape-memory alloys, Int J Non-Linear Mech, 37, 1275-1281 (2002) · Zbl 1346.74029
[15] Ossart, F.; Hubert, O.; Billardon, R., A new internal variables scalar model respecting the wiping-out property, J Magn Magn Mater, 254-255, 170-172 (2003)
[16] Sapinski, B.; Filus, J., Analysis of parametric models of MR linear damper, J Theor Appl Mech, 41, 2, 215-240 (2003)
[17] Masing, G., Zur Heynschen Theorie der Verfestigung der Metalle durch verborgen elastische Spannungen, Wiss Veroffentl aus dem Siemens-Konzern, 3, 1, 231-239 (1923), [in German]
[18] Masing G Eigenspannungen und Vertfestigung beim Messing. In: Proceedings of the second international congress of applied mechanics, Zurich, Switzerland. 1926. p. 332-5 [in German].; Masing G Eigenspannungen und Vertfestigung beim Messing. In: Proceedings of the second international congress of applied mechanics, Zurich, Switzerland. 1926. p. 332-5 [in German].
[19] Bouc R. Forced vibrations of mechanical systems with hysteresis. In Proceedings of the fourth international conference on nonlinear oscillations, Prague, Czechoslovakia, 1967.; Bouc R. Forced vibrations of mechanical systems with hysteresis. In Proceedings of the fourth international conference on nonlinear oscillations, Prague, Czechoslovakia, 1967.
[20] Wen, Y. K., Method for random vibration of hysteretic systems, ASCE J Eng Mech, 120, 2299-2325 (1976)
[21] Sapinski, B., Dynamic characteristics of an experimental MR fluid, Eng Trans, 51, 4, 399-418 (2003)
[22] Awrejcewicz, J.; Dzyubak, L., Influence of hysteretic dissipation on chaotic responses, J Sound Vibr, 284, 513-519 (2005) · Zbl 1237.34051
[23] Awrejcewicz, J.; Dzyubak, L., Quantifying smooth and non-smooth regular and chaotic dynamics, Int J Bifur Chaos, 15, 6, 2041-2055 (2005) · Zbl 1092.37529
[24] Lacarbonara, W.; Vestroni, F., Nonclassical responses of oscillators with hysteresis, Nonlinear Dyn (2004) · Zbl 1062.70599
[25] Li, H. G.; Zhang, J. W.; Wen, B. C., Chaotic behaviors of a bilinear hysteretic oscillator, Mech Res Comm, 29, 283-289 (2002) · Zbl 1024.70501
[26] Capecchi, D.; Masiani, R., Reduced phase space analysis for hysteretic oscillators of Masing type, Chaos, Soliton Fract, 7, 1583-1600 (1996) · Zbl 1080.70527
[27] Jin, C.; Fan, L.; Qiu, Y., The vibration control of a flexible linkage mechanism with impact, Comm Nonlinear Sci Numer Simul, 9, 459-469 (2004) · Zbl 1040.70014
[28] Luo, A., A theory for non-smooth dynamic systems on the connectable domains, Comm Nonlinear Sci Numer Simul, 10, 1-55 (2005) · Zbl 1065.34007
[29] Levinson, N., A second order differential equation with singular solutions, Ann Math, 50, 127-153 (1949) · Zbl 0041.42311
[30] Coddington, E. A.; Levinson, N., Theory of ordinary differential equations (1955), McGraw-Hill: McGraw-Hill New York · Zbl 0064.33002
[31] Leine RI. van de Vrande BL, vanCampen DH. Bifurcations in nonlinear discontinuous systems. Report WFW 99.010, Vakgroep Fundamentele Werktuigkunde, Eindhoven, 1999.; Leine RI. van de Vrande BL, vanCampen DH. Bifurcations in nonlinear discontinuous systems. Report WFW 99.010, Vakgroep Fundamentele Werktuigkunde, Eindhoven, 1999.
[32] Awrejcewicz, J.; Lamarque, C.-H., Bifurcations and chaos in nonsmooth mechanical systems (2003), World Scientific: World Scientific New Jersey, London, Singapore, Hong Kong
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.