×

Ergodic BSDEs under weak dissipative assumptions. (English) Zbl 1221.60080

Summary: We study ergodic backward stochastic differential equations dropping the strong dissipativity assumption needed in [M. Fuhrman, Y. Hu and G. Tessitore, SIAM J. Control Optim. 48, No. 3, 1542–1566 (2009; Zbl 1196.60106)]. In other words, we do not need to require the uniform exponential decay of the difference of two solutions of the underlying forward equation, which, on the contrary, is assumed to be non-degenerate.
We show the existence of solutions by the use of coupling estimates for a non-degenerate forward stochastic differential equation with bounded measurable nonlinearity. Moreover, we prove the uniqueness of “Markovian” solutions by exploiting the recurrence of the same class of forward equations.
Applications are then given for the optimal ergodic control of stochastic partial differential equations and to the associated ergodic Hamilton-Jacobi-Bellman equations.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
93E20 Optimal stochastic control

Citations:

Zbl 1196.60106
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arisawa, M.; Lions, P. L., On ergodic stochastic control, Comm. Partial Differential Equations, 23, 2187-2217 (1998) · Zbl 1126.93434
[2] Bensoussan, A.; Frehse, J., On Bellman equations of ergodic control in \(R^n\), J. Reine Angew. Math., 429, 125-160 (1992) · Zbl 0779.35038
[3] Briand, P.; Hu, Y., Stability of BSDEs with random terminal time and homogenization of semilinear elliptic PDEs, J. Funct. Anal., 155, 455-494 (1998) · Zbl 0912.60081
[4] Da Prato, G.; Debussche, A.; Tubaro, L., Coupling for some partial differential equations driven by white noise, Stochastic Process. Appl., 115, 1384-1407 (2005) · Zbl 1079.60061
[5] Da Prato, G.; Zabczyk, J., (Stochastic Equations in Infinite Dimensions. Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44 (1992), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0761.60052
[6] Da Prato, G.; Zabczyk, J., (Ergodicity for Infinite-dimensional Systems. Ergodicity for Infinite-dimensional Systems, London Mathematical Society Lecture Note Series, vol. 229 (1996), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0849.60052
[7] E, W.; Mattingly, J. C.; Sinai, Y. G., Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys., 224, 83-106 (2001) · Zbl 0994.60065
[8] El Karoui, N.; Peng, S.; Quenez, M. C., Backward stochastic differential equations in finance, Math. Finance, 7, 1-71 (1997) · Zbl 0884.90035
[9] Fuhrman, M.; Tessitore, G., Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 30, 1397-1465 (2002) · Zbl 1017.60076
[10] Fuhrman, M.; Tessitore, G., The Bismut-Elworthy formula for backward SDEs and applications to nonlinear Kolmogorov equations and control in infinite dimensional spaces, Stoch. Stoch. Rep., 74, 429-464 (2002) · Zbl 1013.60049
[11] Fuhrman, M.; Tessitore, G., Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces, Ann. Probab., 32, 607-660 (2004) · Zbl 1046.60061
[12] Fuhrman, M.; Hu, Y.; Tessitore, G., Ergodic BSDEs and optimal ergodic control in Banach spaces, SIAM J. Control Optim., 48, 1542-1566 (2009) · Zbl 1196.60106
[13] Goldys, B.; Maslowski, B., Ergodic control of semilinear stochastic equations and the Hamilton-Jacobi equation, J. Math. Anal. Appl., 234, 592-631 (1999) · Zbl 0939.93043
[14] Hu, Y.; Tessitore, G., BSDE on an infinite horizon and elliptic PDEs in infinite dimension, NoDEA Nonlinear Differential Equations Appl., 14, 825-846 (2007) · Zbl 1136.60038
[15] Kuksin, S.; Shirikyan, A., A coupling approach to randomly forced nonlinear PDEs. I, Comm. Math. Phys., 221, 351-366 (2001) · Zbl 0991.60056
[16] Mattingly, J. C., Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics, Comm. Math. Phys., 230, 421-462 (2002) · Zbl 1054.76020
[17] McShane, E. J.; Warfield, R. B., On Filippov’s implicit functions lemma, Proc. Amer. Math. Soc., 18, 41-47 (1967) · Zbl 0145.34403
[18] Odasso, C., Ergodicity for the stochastic Complex Ginzburg-Landau equations, Ann. Inst. H. Poincaré Probab. Statist., 42, 417-454 (2006) · Zbl 1104.35078
[19] Peng, S., Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27, 125-144 (1993) · Zbl 0769.60054
[20] Richou, A., Ergodic BSDEs and related PDEs with Neumann boundary conditions, Stochastic Process. Appl., 119, 2945-2969 (2009) · Zbl 1173.60327
[21] Royer, M., BSDEs with a random terminal time driven by a monotone generator and their links with PDEs, Stoch. Stoch. Rep., 76, 281-307 (2004) · Zbl 1055.60062
[22] Shirikyan, A., Exponential mixing for 2D Navier-Stokes equation perturbed by an unbounded noise, J. Math. Fluid Mech., 6, 169-193 (2004) · Zbl 1095.35032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.