×

Exponential synchronization of complex networks with Markovian jump and mixed delays. (English) Zbl 1220.90040

Summary: In this letter, we investigate the exponential synchronization problem for an array of \(N\) linearly coupled complex networks with Markovian jump and mixed time-delays. The complex network consists of \(m\) modes and the network switches from one mode to another according to a Markovian chain with known transition probability. The mixed time-delays are composed of discrete and distributed delays, both of which are mode-dependent. The nonlinearities imbedded with the complex networks are assumed to satisfy the sector condition that is more general than the commonly used Lipschitz condition. By making use of the Kronecker product and the stochastic analysis tool, we propose a novel Lyapunov-Krasovskiĭ functional suitable for handling distributed delays and then show that the addressed synchronization problem is solvable if a set of linear matrix inequalities (LMIs) are feasible. Therefore, a unified LMI approach is developed to establish sufficient conditions for the coupled complex network to be globally exponentially synchronized in the mean square. Note that the LMIs can be easily solved by using the Matlab LMI toolbox and no tuning of parameters is required. A simulation example is provided to demonstrate the usefulness of the main results obtained.

MSC:

90B15 Stochastic network models in operations research
34F05 Ordinary differential equations and systems with randomness
34K20 Stability theory of functional-differential equations
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
93E15 Stochastic stability in control theory

Software:

Matlab; LMI toolbox
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Watts, D. J.; Strogatz, S. H., Nature, 393, 440 (1998)
[2] Wang, X.-F.; Chen, G., Int. J. Bifur. Chaos, 12, 1, 187 (2002)
[3] Jost, J.; Joy, M., Phys. Rev. E, 65, 061201 (2002)
[4] J. Liang, Z. Wang, X. Liu, Exponential synchronization of stochastic delayed discrete-time complex networks, Nonlinear Dynam., in press; J. Liang, Z. Wang, X. Liu, Exponential synchronization of stochastic delayed discrete-time complex networks, Nonlinear Dynam., in press
[5] Arenas, A.; Díaz-Guilera, A.; Pérez-Vicente, C. J., Physica D: Nonlinear Phenomena, 224, 1-2, 27 (2006)
[6] Zheleznyak, A.; Chua, L. O., Int. J. Bifur. Chaos, 4, 3, 639 (1994) · Zbl 0900.92015
[7] Perez-Munuzuri, V.; Perez-Villar, V.; Chua, L. O., IEEE Trans. Circuits Syst.-I, 40, 174 (1993) · Zbl 0800.92038
[8] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 8, 821 (1990)
[9] Li, Z.; Chen, G., IEEE Trans. Circuits Syst.-II, 53, 1, 28 (2006)
[10] Wu, C. W., IEEE Trans. Circuits Syst.-II, 52, 5, 282 (2005)
[11] Gao, H.; Chen, T., IEEE Trans. Automat. Control, 52, 328 (2007)
[12] Gao, H.; Lam, J.; Chen, G., Phys. Lett. A, 360, 263 (2006)
[13] Mahmoud, M. S.; Shi, Y.; Nounou, H. N., Int. J. Innovative Comput. Inform. Control, 3, 2, 407 (2007)
[14] Basin, M.; Sanchez, E.; Martinez-Zuniga, R., Int. J. Innovative Comput. Inform. Control, 3, 5, 1309 (2007)
[15] Li, C. G.; Chen, G., Physica A, 343, 263 (2004)
[16] Wang, Z.; Liu, Y.; Fraser, K.; Liu, X., Phys. Lett. A, 354, 4, 288 (2006)
[17] Wang, Z.; Liu, Y.; Li, M.; Liu, X., IEEE Trans. Neural Networks, 17, 3, 814 (2006)
[18] Lu, W. L.; Chen, T. P., IEEE Trans. Circuits Syst.-I, 51, 12, 2491 (2004)
[19] Lu, W. L.; Chen, T. P.; Chen, G., Physica D: Nonlinear Phenomena, 221, 2, 118 (2006)
[20] Casey, M. P., Neural Comput., 8, 6, 1135 (1996)
[21] Tino, P.; Cernansky, M.; Benuskova, L., IEEE Trans. Neural Networks, 15, 1, 6 (2004)
[22] Wang, Z.; Liu, Y.; Yu, L.; Liu, X., Phys. Lett. A, 356, 4-5, 346 (2006)
[23] Busch, C.; Magdon-Ismail, M.; Mavronicolas, M., J. Parallel Distrib. Comput., 67, 1168 (2007)
[24] Chen, W.-M.; Li, C.-S.; Chiang, F.-Y.; Chao, H.-C., Comput. Commun., 30, 2892 (2007)
[25] Gunawan, I., Reliability Eng. Syst. Safety, 93, 271 (2008)
[26] Torres, J. J.; Marro, J.; Garrido, P. L.; Cortes, J. M.; Ramos, F.; Munoz, M. A., Biophys. Chem., 115, 285 (2005)
[27] Ji, Y.; Chizeck, H. J., IEEE Trans. Automat. Control, 35, 777 (1990)
[28] Shi, P.; Xia, Y.; Liu, G.; Rees, D., IEEE Trans. Automat. Control, 51, 1, 97 (2006)
[29] Hu, L.; Shi, P.; Huang, B., J. Math. Anal. Appl., 313, 2, 504 (2006)
[30] Liu, Y.; Wang, Z.; Liu, X., Neural Networks, 19, 5, 667 (2006)
[31] K.Q. Gu, An integral inequality in the stability problem of time-delay systems, in: Proceedings of 39th IEEE Conference on Decision and Control, December 2000, Sydney, Australia, 2000, pp. 2805-2810; K.Q. Gu, An integral inequality in the stability problem of time-delay systems, in: Proceedings of 39th IEEE Conference on Decision and Control, December 2000, Sydney, Australia, 2000, pp. 2805-2810
[32] Khasminskii, R. Z., Stochastic Stability of Differential Equations (1980), Alphen aan den Rijn: Alphen aan den Rijn Sijthoffand Noor, Khasminskiidhoff · Zbl 1259.60058
[33] Skorohod, A. V., Asymptotic Methods in the Theory of Stochastic Differential Equations (1989), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI
[34] Lu, J. Q.; Ho, D. W.C., Chaos Solitons Fractals, 37, 1497 (2008)
[35] Lu, J. Q.; Ho, D. W.C.; Liu, M., Phys. Lett. A, 369, 5-6, 444 (2007)
[36] Chua, L. O.; Wu, C. W.; Huang, A.; Zhong, G.-Q., IEEE Trans. Circuits Syst.-I, 40, 732 (1993)
[37] Wang, X. F.; Zhong, G. Q.; Tang, K. F.; Liu, Z. F., IEEE Trans. Circuits Syst.-I, 48, 9, 1151 (2001)
[38] Cruz-Hernández, C.; Romero-Haros, N., Commun. Nonlinear Sci. Numer. Simul., 13, 645 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.