×

On generalized inverses and Green’s relations. (English) Zbl 1219.15007

The paper deals with generalized inverses on semigroups by means of Green’s relations.
The author introduces a new type of generalized inverse, the inverse along an element, that is based on Green’s relations \({\mathcal L}\), \({\mathcal R}\) and \({\mathcal H}\) and the associated preorders. Given a semigroup \(S\) and elements \(a,b \in S\), Green’s relations are defined by:
1) \(a {\mathcal L} b\) if and only if \(S^1a=S^1b\);
2) \(a {\mathcal R} b\) if and only if \(aS^1=bS^1\);
3) \(a {\mathcal H} b\) if and only if \(a {\mathcal L} b\) and \(a {\mathcal R} b\),
where \(S^1\) denotes the monoid generated by \(S\), and the preorder relations are:
4) \(a \leq_{\mathcal L} b\) if and only if \(S^1a \subset S^1b\);
5) \(a \leq_{\mathcal R} b\) if and only if \(aS^1 \subset bS^1\);
6) \(a \leq_{\mathcal H} b\) if and only if \(a \leq_{\mathcal L} b\) and \(a \leq_{\mathcal R} b\).
In this paper, the author defines the following generalized inverse: Given \(a,d \in S\), \(b \in S\) is an inverse of \(a\) along \(d\) if it verifies \(bad=d=dab\) and \(b \leq_{\mathcal H} d\). If moreover the inverse \(b\) of \(a\) along \(d\) verifies \(aba=a\), it is said that \(b\) is an inner inverse of \(a\) along \(d\).
The author derives the properties of this new generalized inverse and shows that the classical generalized inverses: the group inverse, the Drazin inverse and the Moore-Penrose inverse, belong to this class, and retrieve their properties.

MSC:

15A09 Theory of matrix inversion and generalized inverses
20M99 Semigroups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ben-Israel, A.; Greville, T. N.E., Generalized Inverses Theory and Applications (1974), John Wiley & Sons: John Wiley & Sons New York · Zbl 0305.15001
[2] Drazin, M. P., Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly, 65, 7, 506-514 (1958) · Zbl 0083.02901
[3] Green, J. A., On the structure of semigroups, Ann. Math., 54, 1, 163-172 (1951) · Zbl 0043.25601
[4] Harte, R.; Mbekhta, M., On generalized inverses in \(C^\ast \)-algebras, Studia Math., 103, 71-77 (1992) · Zbl 0810.46062
[5] Huang, D., Group inverses and Drazin inverses over Banach algebras, Integral Equ. Oper. Theory, 17, 1, 54-67 (1993) · Zbl 0790.15005
[6] Koliha, J. J., The Drazin and Moore-Penrose inverse in \(C^\ast \)-algebras, Math. Proc. R. Ir. Acad., 99A, 17-27 (1999) · Zbl 0943.46031
[7] Koliha, J. J., Range projections of idempotents in \(C^\ast \)-algebras, Demonstratio Math., 34, 91-103 (2001) · Zbl 0981.46047
[8] Koliha, J. J.; Patricio, P., Elements of rings with equal spectral idempotents, J. Austral. Math. Soc., 72, 137-152 (2002) · Zbl 0999.16025
[9] Mary, X., Moore-Penrose inverse in Kreı˘n spaces, Integral Equ. Oper. Theory, 60, 3, 419-433 (2008) · Zbl 1167.47004
[10] Mary, X., On the converse of a theorem of Harte and Mbekhta: Erratum to “On generalized inverses in \(C^\ast \)-algebras”, Studia Math., 184, 149-151 (2008) · Zbl 1142.46025
[11] Miller, D. D.; Clifford, A. H., Regular \(D\)-classes in semigroups, Trans. Amer. Math. Soc., 82, 1, 270-280 (1956) · Zbl 0071.02001
[12] Moore, E. H., On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc., 26, 394-395 (1920)
[13] Pastijn, F., The structure of pseudo-inverse semigroups, Trans. Amer. Math. Soc., 273, 2, 631-655 (1982) · Zbl 0512.20042
[14] Patricio, P.; Puystjens, R., Drazin-Moore-Penrose invertibility in rings, Linear Algebra Appl., 389, 159-173 (2004) · Zbl 1080.15004
[15] Penrose, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51, 406-413 (1955) · Zbl 0065.24603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.