×

Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey. (English) Zbl 1215.92061

Summary: This work aims to examine the global behavior of a Gause type predator-prey model considering two aspects: (i) the functional response is Holling type III and, (ii) the prey growth is affected by the Allee effect. We prove that the origin of the system is an attractor equilibrium point for all parameter values. It has also been shown that it is the \(\omega \)-limit of a wide set of trajectories of the system, due to the existence of a separatrix curve determined by the stable manifold of the equilibrium point \((m,0)\), which is associated to the Allee effect on prey. When a weak Allee effect on the prey is assumed, an important result is obtained, involving the existence of two limit cycles surrounding a unique positive equilibrium point: the innermost cycle is unstable and the outermost stable. This property, not yet reported in models considering a sigmoid functional response, is an important aspect for ecologists to acknowledge as regards the kind of tristability shown here: (1) the origin; (2) an interior equilibrium; and (3) a limit cycle of large amplitude. These models have undoubtedly been rather sensitive to disturbances and require careful management in applied conservation and renewable resource contexts.

MSC:

92D40 Ecology
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models

Software:

Mathematica
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Angulo, E., Roemer, G. W., Berec, L., Gascoigne, J., & Courchamp, F. (2007). Double Allee effects and extinction in the island fox. Conserv. Biol., 21, 1082–1091. · doi:10.1111/j.1523-1739.2007.00721.x
[2] Arrowsmith, D. K., & Place, C. M. (1992). Dynamical systems. Differential equations, maps and chaotic behaviour. London: Chapman and Hall. · Zbl 0754.34001
[3] Bazykin, A. D. (1998). Nonlinear dynamics of interacting populations. Singapore: World Scientific.
[4] Bazykin, A. D., Berezovskaya, F. S., Isaev, A. S., & Khlebopros, R. G. (1997). Dynamics of forest insect density: Bifurcation approach. J. Theor. Biol., 186, 267–278. · doi:10.1006/jtbi.1996.0363
[5] Berec, L., Angulo, E., & Courchamp, F. (2007). Multiple Allee effects and population management. Trends Ecol. Evol., 22, 185–191. · doi:10.1016/j.tree.2006.12.002
[6] Boukal, D. S., & Berec, L. (2002). Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters. J. Theor. Biol., 218, 375–394. · doi:10.1006/jtbi.2002.3084
[7] Boukal, D. S., Sabelis, M. W., & Berec, L. (2007). How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theor. Popul. Biol., 72, 136–147. · Zbl 1123.92034 · doi:10.1016/j.tpb.2006.12.003
[8] Chicone, C. (2006). Texts in applied mathematics : Vol. 34. Ordinary differential equations with applications. Berlin: Springer. · Zbl 1120.34001
[9] Clark, C. W. (1990). Mathematical bioeconomic: The optimal management of renewable resources (2nd ed.). New York: Wiley. · Zbl 0712.90018
[10] Clark, C. W. (2007). The worldwide crisis in fisheries: Economic models and human behavior. Cambridge: Cambridge University Press.
[11] Coleman, C. S. (1983). Hilbert’s 16th problem: How many cycles? In M. Braun, C. S. Coleman, & D. Drew (Eds.), Differential equations model (pp. 279–297). Berlin: Springer.
[12] Conway, E. D., & Smoller, J. A. (1986). Global analysis of a system of predator–prey equations. SIAM J. Appl. Math., 46, 630–642. · Zbl 0608.92016 · doi:10.1137/0146043
[13] Courchamp, F., Clutton-Brock, T., & Grenfell, B. (1999). Inverse dependence and the Allee effect. Trends Ecol. Evol., 14, 405–410. · doi:10.1016/S0169-5347(99)01683-3
[14] Courchamp, F., Berec, L., & Gascoigne, J. (2008). Allee effects in ecology and conservation. Oxford: Oxford University Press.
[15] Dennis, B. (1989). Allee effects: population growth, critical density, and the chance of extinction. Natural Resour. Model., 3, 481–538. · Zbl 0850.92062
[16] Dumortier, F., Llibre, J., & Artés, J. C. (2006). Qualitative theory of planar differential systems. Berlin: Springer. · Zbl 1110.34002
[17] Flores, J. D., Mena-Lorca, J., González-Yañez, B., & González-Olivares, E. (2007). Consequences of depensation in a Smith’s bioeconomic model for open-access fishery. In R. Mondaini & R. Dilao (Eds.), Proceedings of international symposium on mathematical and computational biology (pp. 219–232). E-papers Serviços Editoriais Ltda.
[18] Freedman, H. I. (1980). Deterministic mathematical model in population ecology. New York: Dekker. · Zbl 0448.92023
[19] Gaiko, V. A. (2003). Mathematics and its applications : Vol. 559. Global bifurcation theory and Hilbert’s sixteenth problem. Dordrecht: Kluwer Academic. · Zbl 1156.34316
[20] Getz, W. M. (1996). A hypothesis regarding the abruptness of density dependence and the growth rate populations. Ecology, 77, 2014–2026. · doi:10.2307/2265697
[21] Goh, B.-S. (1980). Management and analysis of biological populations. Amsterdam: Elsevier.
[22] González-Olivares, E., González-Yañez, B., Sáez, E., & Szantó, I. (2006). On the number of limit cycles in a predator prey model with non-monotonic functional response. Discrete Contin. Dyn. Syst., 6, 525–534. · Zbl 1092.92045 · doi:10.3934/dcdsb.2006.6.525
[23] González-Olivares, E., González-Yañez, B., Mena-Lorca, J., & Ramos-Jiliberto, R. (2007). Modelling the Allee effect: are the different mathematical forms proposed equivalents? In R. Mondaini (Ed.), Proceedings of international symposium on mathematical and computational biology (pp. 53–71). E-papers Serviços Editoriais Ltda.
[24] González-Olivares, E., Meneses-Alcay, H., González-Yañez, B., Mena-Lorca, J., Rojas-Palma, A., & Ramos-Jiliberto, R. (2010). Multiple stability and uniqueness of limit cycle in a Gause-type predator–prey model considering Allee effect on prey. Nonlinear Anal. Real World Appl. (submitted). · Zbl 1231.34053
[25] González-Olivares, E., Mena-Lorca, J., Rojas-Palma, A., & Flores, J. D. (2011). Dynamical complexities in the Leslie-Gower predator–prey model as consequences of the Allee effect on prey. Appl. Math. Model., 35, 366–381. · Zbl 1202.34079 · doi:10.1016/j.apm.2010.07.001
[26] González-Yañez, B., & González-Olivares, E. (2004). Consequences of Allee effect on a Gause type predator–prey model with nonmonotonic functional response. In R. Mondaini (Ed.), Proceedings of the third Brazilian symposium on mathematical and computational biology (Vol. 2, pp. 358–373). Río de Janeiro: E-Papers Serviços Editoriais Ltda.
[27] Hasík, K. (2010). On a predator–prey system of Gause type. J. Math. Biol., 60, 59–74. · Zbl 1311.92159 · doi:10.1007/s00285-009-0257-8
[28] Hesaaraki, M., & Moghadas, S. M. (1999). Nonexistence of limit cycles in a predator–prey system with a sigmoid functional response. Can. Appl. Math. Q., 7(4), 1–8. · Zbl 0977.92019
[29] Huang, X.-C., & Zhu, L. (2005). Limit cycles in a general Kolmogorov model. Nonlinear Anal., 60, 1393–1414. · Zbl 1074.34035 · doi:10.1016/j.na.2004.11.003
[30] Kot, M. (2001). Elements of mathematical biology. Cambridge: Cambridge University Press.
[31] Kuang, Y. (1988). Nonuniqueness of limit cycles of Gause-type predator–prey systems. Appl. Anal., 29, 269–287. · Zbl 0629.34036 · doi:10.1080/00036818808839785
[32] Kuang, Y., & Freedman, H. I. (1988). Uniqueness of limit cycles in Gause type models of predator–prey systems. Math. Bioci., 88, 67–84. · Zbl 0642.92016 · doi:10.1016/0025-5564(88)90049-1
[33] Liermann, M., & Hilborn, R. (2001). Depensation: evidence, models and implications. Fish Fish., 2, 33–58. · doi:10.1046/j.1467-2979.2001.00029.x
[34] Ludwig, D., Jones, D. D., & Holling, C. S. (1978). Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol., 36, 204–221.
[35] Middlemas, S. J., Barton, T. R., Armstrong, J. D., & Thompson, P. M. (2006). Functional and aggregative responses of harbour seals to changes in salmonid abundance. Proc. R. Soc. B, 273, 193–198. · doi:10.1098/rspb.2005.3215
[36] Moghadas, S. M., & Corbett, B. D. (2008). Limit cycles in a generalized Gause-type predator–prey model. Chaos Solitons Fractals, 37, 1343–1355. · Zbl 1142.34325 · doi:10.1016/j.chaos.2006.10.017
[37] Murdoch, W. W., Briggs, C. J., & Nisbet, R. M. (2003). Monographs in population biology : Vol. 36. Consumer-resources dynamics. Princeton: Princeton University Press.
[38] Rojas-Palma, A., González-Olivares, E., & González-Yañez, B. (2007). Metastability in a Gause type predator–prey models with sigmoid functional response and multiplicative Allee effect on prey. In R. Mondaini (Ed.), Proceedings of international symposium on mathematical and computational biology (pp. 295–321). E-papers Serviços Editoriais Ltda.
[39] Schenk, D., & Bacher, S. (2002). Functional response of a generalist insect predator to one of its prey species in the field. J. Anim. Ecol., 71, 524–531. · doi:10.1046/j.1365-2656.2002.00620.x
[40] Spencer, P. D., & Collie, J. S. (1995). A simple predator–prey model of exploited marine fish populations incorporating alternative prey. ICES J. Mar. Sci., 53, 615–628. · doi:10.1006/jmsc.1996.0082
[41] Stephens, P. A., & Sutherland, W. J. (1999). Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol., 14, 401–405. · doi:10.1016/S0169-5347(99)01684-5
[42] Sugie, J., & Katayama, M. (1999). Global asymptotic stability of a predator–prey system of Holling type. Nonlinear Anal., 38, 105–121. · Zbl 0984.34043 · doi:10.1016/S0362-546X(99)00099-1
[43] Sugie, J., Miyamoto, K., & Morino, K. (1996). Absence of limits cycle of a predator–prey system with a sigmoid functional response. Appl. Math. Lett., 9, 85–90. · Zbl 0865.34032 · doi:10.1016/0893-9659(96)00056-0
[44] Sugie, J., Kohno, R., & Miyazaki, R. (1997). On a predator–prey system of Holling type. Proc. Am. Math. Soc., 125, 2041–2050. · Zbl 0868.34023 · doi:10.1090/S0002-9939-97-03901-4
[45] Turchin, P. (2003). Mongraphs in population biology : Vol. 35. Complex population dynamics. A theoretical/empirical synthesis. Princeton: Princeton University Press. · Zbl 1062.92077
[46] van Baalen, M., Krivan, V., van Rijn, P. C. J., & Sabelis, M. W. (2001). Alternative food, switching predators, and the persistence of predator–prey systems. Am. Nat., 157, 1–13. · doi:10.1086/317005
[47] van Voorn, G. A. K., Hemerik, L., Boer, M. P., & Kooi, B. W. (2007). Heteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee effect. Math. Biosci., 209, 451–469. · Zbl 1126.92062 · doi:10.1016/j.mbs.2007.02.006
[48] Wang, G., Liang, X.-G., & Wang, F.-Z. (1999). The competitive dynamics of populations subject to an Allee effect. Ecol. Model., 124, 183–192. · doi:10.1016/S0304-3800(99)00160-X
[49] Wang, M.-H., & Kot, M. (2001). Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci., 171, 83–97. · Zbl 0978.92033 · doi:10.1016/S0025-5564(01)00048-7
[50] Wang, W., & Sun, J.-H. (2007). On the predator–prey system with Holling-(n + 1) functional response. Acta Math. Sin. Engl. Ser., 23, 1–6. · Zbl 1123.34314 · doi:10.1007/s10114-005-0603-8
[51] Wang, J., Shi, J., & Wei, J. (2010). Predator–prey system with strong Allee effect in prey. J. Math. Biol., doi: 10.1007/s00285-010-0332-1 . · Zbl 1232.92076
[52] Wolfram Research (1988). Mathematica: A system for doing mathematics by computer. · Zbl 0671.65002
[53] Xiao, D., & Zhang, Z. (2003). On the uniqueness and nonexistence of limit cycles for predator–prey systems. Nonlinearity, 16, 1185–1201. · Zbl 1042.34060 · doi:10.1088/0951-7715/16/3/321
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.