×

Fourier inversion of distributions supported by a hypersurface. (English) Zbl 1215.42017

The authors consider a compact oriented (N-1)-dimensional analytic submanifold \(\Sigma\) of \(\mathbb{R}^N\), with \(N\geq 3\), and define the natural measure \(\mu _\Sigma\) on \(\Sigma\), which can be seen as a distribution on \(\mathbb{R}^N\) of order 0 and compact support included in \(\Sigma\). In the main result, they give a sufficient condition in order that the Fourier integral of the distribution \(P(D)\psi \mu _\Sigma\) at a point outside \(\Sigma\) is \((C,\lambda)\)-summable to zero. Here \(P(D)\) is a partial differential operator with constant coefficients of order \(m\) and \(\psi \in C^\infty (\mathbb{R}^N,\mathbb{R})\). As an example, they consider an ellipsoid \(\Sigma\) in \(\mathbb{R}^3\) with axes of different lengths.

MSC:

42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
46F12 Integral transforms in distribution spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnol’d, V.I.: Catastrophe theory. In: Dynamical Systems. Encyclopaedia of Mathematical Sciences, vol. V, pp. 207–271. Springer, Berlin (1994)
[2] Arnol’d, V.I., Guseĭn-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Vol. II (Monodromy and Asymptotics of Integrals). Birkhäuser, Boston (1988)
[3] Brauner, H.: Differentialgeometrie. Vieweg, Braunschweig (1981)
[4] Chapman, S., Hardy, G.H.: A general view of the theory of summable series. Q. J. Math. 42, 181–215 (1911) · JFM 42.0268.05
[5] Fedoryuk, M.V.: The stationary phase method for multidimensional integrals. U.S.S.R. Comput. Math. Math. Phys. 2, 152–157 (1962) · Zbl 0122.12401 · doi:10.1016/0041-5553(63)90278-7
[6] González Vieli, F.J.: Inversion de Fourier ponctuelle des distributions à support compact. Arch. Math. 75, 290–298 (2000) · Zbl 0988.46030 · doi:10.1007/s000130050506
[7] González Vieli, F.J.: Fourier inversion of distributions with support on a plane curve. Integral Transform. Spec. Funct. 13, 93–100 (2002) · Zbl 1029.46044 · doi:10.1080/10652460212886
[8] Hardy, G.H.: Divergent Series. Clarendon, Oxford (1949)
[9] Hewitt, E.: Remarks on the inversion of Fourier-Stieltjes transforms. Ann. Math. (2) 57, 458–474 (1953) · Zbl 0052.11801 · doi:10.2307/1969730
[10] Pinsky, M.A.: Fourier inversion for piecewise smooth functions in several variables. Proc. Am. Math. Soc. 118, 903–910 (1993) · Zbl 0783.42009 · doi:10.1090/S0002-9939-1993-1146865-6
[11] Pinsky, M.A., Taylor, M.E.: Pointwise Fourier inversion: a wave equation approach. J. Fourier Anal. Appl. 3, 647–703 (1997) · Zbl 0901.42008 · doi:10.1007/BF02648262
[12] Popov, D.A.: Spherical convergence of the Fourier integral of the indicator function of an N-dimensional domain. Sb. Math. 189, 1101–1113 (1998) · Zbl 0920.42004 · doi:10.1070/SM1998v189n07ABEH000342
[13] Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993) · Zbl 0821.42001
[14] Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Clarendon, Oxford (1948) · Zbl 0031.03202
[15] Varchenko, A.N.: Newton polyhedra and estimation of oscillating integrals. Funct. Anal. Appl. 10, 175–196 (1976) · Zbl 0351.32011 · doi:10.1007/BF01075524
[16] Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1944) · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.