×

Best proximity points: Global optimal approximate solutions. (English) Zbl 1208.90128

Summary: Let \(A\) and \(B\) be non-empty subsets of a metric space. As a non-self mapping \({T : A \longrightarrow B}\) does not necessarily have a fixed point, it is of considerable interest to find an element \(x\) in \(A\) that is as close to \(Tx\) in \(B\) as possible. In other words, if the fixed point equation \(Tx = x\) has no exact solution, then it is contemplated to find an approximate solution \(x\) in \(A\) such that the error \(d(x, Tx)\) is minimum, where \(d\) is the distance function. Indeed, best proximity point theorems investigate the existence of such optimal approximate solutions, called best proximity points, to the fixed point equation \(Tx = x\) when there is no exact solution. As the distance between any element \(x\) in \(A\) and its image \(Tx\) in \(B\) is at least the distance between the sets \(A\) and \(B\), a best proximity pair theorem achieves global minimum of \(d(x, Tx)\) by stipulating an approximate solution \(x\) of the fixed point equation \(Tx = x\) to satisfy the condition that \(d(x, Tx) = d(A, B)\). The purpose of this article is to establish best proximity point theorems for contractive non-self mappings, yielding global optimal approximate solutions of certain fixed point equations. Besides establishing the existence of best proximity points, iterative algorithms are also furnished to determine such optimal approximate solutions.

MSC:

90C20 Quadratic programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al-Thagafi M.A., Shahzad N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70(10), 3665–3671 (2009) · Zbl 1197.47067 · doi:10.1016/j.na.2008.07.022
[2] Al-Thagafi M.A., Shahzad N.: Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Anal. 70(3), 1209–1216 (2009) · Zbl 1225.47056 · doi:10.1016/j.na.2008.02.004
[3] Al-Thagafi, M.A., Shahzad, N.: Best proximity sets and equilibrium pairs for a finite family of multimaps, Fixed Point Theory Appl., Art. ID 457069, 10 pp (2008) · Zbl 1169.47040
[4] Anthony Eldred A., Veeramani P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006) · Zbl 1105.54021 · doi:10.1016/j.jmaa.2005.10.081
[5] Anthony Eldred A., Kirk W.A., Veeramani P.: Proximinal normal structure and relatively nonexpanisve mappings. Studia Math. 171(3), 283–293 (2005) · Zbl 1078.47013 · doi:10.4064/sm171-3-5
[6] Di Bari C., Suzuki T., Vetro C.: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69(11), 3790–3794 (2008) · Zbl 1169.54021 · doi:10.1016/j.na.2007.10.014
[7] Edelstein M.: On fixed and periodic points under contractive mappings. J. London Math. Soc. 37, 74–79 (1962) · Zbl 0113.16503 · doi:10.1112/jlms/s1-37.1.74
[8] Fan K.: Extensions of two fixed point theorems of F. E. Browder. Math. Z. 112, 234–240 (1969) · Zbl 0185.39503 · doi:10.1007/BF01110225
[9] Karpagam, S., Agrawal, S.: Best proximity point theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory Appl., Art. ID 197308, 9 pp (2009) · Zbl 1172.54028
[10] Kim W.K., Kum S., Lee K.H.: On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Anal. 68(8), 2216–2222 (2008) · Zbl 1136.91309 · doi:10.1016/j.na.2007.01.057
[11] Kirk W.A., Reich S., Veeramani P.: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24, 851–862 (2003) · Zbl 1054.47040 · doi:10.1081/NFA-120026380
[12] Prolla, J.B.: Fixed point theorems for set valued mappings and existence of best approximations, Numer. Funct. Anal. Optim. 5, 449–455 (1982–1983) · Zbl 0513.41015
[13] Reich S.: Approximate selections, best approximations, fixed points and invariant sets. J. Math. Anal. Appl. 62, 104–113 (1978) · Zbl 0375.47031 · doi:10.1016/0022-247X(78)90222-6
[14] Sadiq Basha S., Veeramani P.: Best approximations and best proximity pairs. Acta Sci. Math. (Szeged) 63, 289–300 (1997) · Zbl 0909.47042
[15] Sadiq Basha S., Veeramani P.: Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory 103, 119–129 (2000) · Zbl 0965.41020 · doi:10.1006/jath.1999.3415
[16] Sadiq Basha S., Veeramani P., Pai D.V.: Best proximity pair theorems. Indian J. Pure Appl. Math. 32, 1237–1246 (2001) · Zbl 1021.47027
[17] Sehgal V.M., Singh S.P.: A generalization to multifunctions of Fan’s best approximation theorem. Proc. Am. Math. Soc. 102, 534–537 (1988) · Zbl 0672.47043
[18] Sehgal V.M., Singh S.P.: A theorem on best approximations. Numer. Funct. Anal. Optim. 10, 181–184 (1989) · Zbl 0635.41022 · doi:10.1080/01630568908816298
[19] Srinivasan P.S.: Best proximity pair theorems. Acta Sci. Math. (Szeged) 67, 421–429 (2001) · Zbl 1012.47031
[20] Vetrivel V., Veeramani P., Bhattacharyya P.: Some extensions of Fan’s best approximation theorem. Numer. Funct. Anal. Optim. 13, 397–402 (1992) · Zbl 0763.41026 · doi:10.1080/01630569208816486
[21] Wlodarczyk K., Plebaniak R., Banach A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70(9), 3332–3341 (2009) · Zbl 1182.54024 · doi:10.1016/j.na.2008.04.037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.