×

Thermal radiation of various gravitational backgrounds. (English) Zbl 1206.83093

Summary: We present a simple and general procedure for calculating the thermal radiation coming from any stationary metric. The physical picture is that the radiation arises as the quasiclassical tunneling of particles through a gravitational barrier. We study three cases in detail: the linear accelerating observer (Unruh radiation), the nonrotating black hole (Hawking radiation), and the rotating/orbiting observer (circular Unruh radiation). For the linear accelerating observer we obtain a thermal spectrum with the usual Unruh temperature. For the nonrotating black hole we obtain a thermal spectrum, but with a temperature twice that given by the original Hawking calculations. We discuss possible reasons for the discrepancies in temperatures as given by the two different methods. For the rotating/orbiting case the quasiclassical tunneling approach indicates that there is no thermal radiation. This result for the rotating/orbiting case has experimental implications for the experimental detection of this effect via the polarization of particles in storage rings.

MSC:

83C57 Black holes
80A10 Classical and relativistic thermodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/BF02345020 · Zbl 1378.83040 · doi:10.1007/BF02345020
[2] DOI: 10.1103/PhysRevLett.85.5042 · Zbl 1369.83053 · doi:10.1103/PhysRevLett.85.5042
[3] DOI: 10.1142/S0218271804006498 · doi:10.1142/S0218271804006498
[4] DOI: 10.1016/0550-3213(94)00411-7 · doi:10.1016/0550-3213(94)00411-7
[5] DOI: 10.1142/S021773230501861X · Zbl 1076.83015 · doi:10.1142/S021773230501861X
[6] Angheben M., J. High Energy Phys. 0505 pp 014–
[7] DOI: 10.1088/0305-4470/39/21/S59 · Zbl 1101.83026 · doi:10.1088/0305-4470/39/21/S59
[8] DOI: 10.1103/PhysRevD.14.870 · doi:10.1103/PhysRevD.14.870
[9] DOI: 10.1103/PhysRevD.23.1709 · doi:10.1103/PhysRevD.23.1709
[10] DOI: 10.1016/0550-3213(83)90601-6 · doi:10.1016/0550-3213(83)90601-6
[11] Landau L., Quantum Mechanics (Non-Relativistic Theory) (1977) · Zbl 0178.57901
[12] DOI: 10.1016/0370-1573(95)00008-5 · doi:10.1016/0370-1573(95)00008-5
[13] DOI: 10.1103/PhysRevD.60.024007 · doi:10.1103/PhysRevD.60.024007
[14] DOI: 10.1088/0264-9381/19/10/310 · Zbl 1002.83039 · doi:10.1088/0264-9381/19/10/310
[15] Vagenas E. C., Nuovo Cimento B 117 pp 899–
[16] DOI: 10.1016/B978-0-08-025072-4.50012-5 · doi:10.1016/B978-0-08-025072-4.50012-5
[17] Volovik G. E., JETP Lett. 69 pp 662–
[18] DOI: 10.1016/j.physletb.2006.09.028 · Zbl 1248.83046 · doi:10.1016/j.physletb.2006.09.028
[19] DOI: 10.1016/0550-3213(91)90526-4 · doi:10.1016/0550-3213(91)90526-4
[20] DOI: 10.1016/0393-0440(84)90013-5 · doi:10.1016/0393-0440(84)90013-5
[21] DOI: 10.1088/0264-9381/21/19/011 · Zbl 1060.83025 · doi:10.1088/0264-9381/21/19/011
[22] DOI: 10.1088/0264-9381/23/22/015 · Zbl 1117.83030 · doi:10.1088/0264-9381/23/22/015
[23] DOI: 10.1103/PhysRev.82.664 · Zbl 0043.42201 · doi:10.1103/PhysRev.82.664
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.