×

Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation. (English) Zbl 1205.93066

Summary: This paper presents a Fault Detection and Isolation (FDI) scheme for a class of Lipschitz nonlinear systems with nonlinear and unstructured modeling uncertainty. This significantly extends previous results by considering a more general class of system nonlinearities which are modeled as functions of the system input and partially measurable state variables. A new FDI method is developed using adaptive estimation techniques. The FDI architecture consists of a fault detection estimator and a bank of fault isolation estimators. The fault detectability and isolability conditions, characterizing the class of faults that are detectable and isolable by the proposed scheme, are rigorously established. The fault isolability condition is derived via the so-called fault mismatch functions, which are defined to characterize the mutual difference between pairs of possible faults. A simulation example of a single-link flexible joint robot is used to illustrate the effectiveness of the proposed scheme.

MSC:

93C10 Nonlinear systems in control theory
93C40 Adaptive control/observation systems
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M., Diagnosis and fault-tolerant control (2006), Springer: Springer Berlin · Zbl 1126.93004
[2] Chen, J.; Patton, R. J., Robust model-based fault diagnosis for dynamic systems (1999), Kluwer Academic Publishers: Kluwer Academic Publishers London · Zbl 0920.93001
[3] Chen, W.; Saif, M., A sliding mode observer-based strategy for fault detection, isolation, and estimation in a class of lipschitz nonlinear systems, International Journal of System Science, 38, 12, 943-955 (2007) · Zbl 1283.93062
[4] Demetriou, M. A.; Polycarpou, M. M., Incipient fault diagnosis of dynamical systems using on-line approximators, IEEE Transactions on Automatic Control, 43, 11, 1612-1617 (1998) · Zbl 0957.90037
[5] Edwards, C.; Spurgeon, S. K.; Patton, R. J., Sliding mode observers for fault detection and isolation, Automatica, 36, 541-553 (2000) · Zbl 0968.93502
[6] Emami-Naeini, A.; Akhter, M. M.; Rock, S. M., Effect of model uncertainty on failure detection: The threshold selector, IEEE Transactions on Automatic Control, 33, 1106-1115 (1988) · Zbl 0659.93062
[7] Farrell, J.; Polycarpou, M. M., Adaptive approximation based control (2006), J. Wiley: J. Wiley Hoboken, NJ
[8] Ferrari, R.; Parisini, T.; Polycarpou, M. M., Distributed fault diagnosis with overlapping decompositions: An adaptive approximation approach, IEEE Transactions on Automatic Control, 54, 794-799 (2009) · Zbl 1367.93044
[9] Floquet, T.; Barbot, J. P.; Perruquetti, W., On the robust fault detection via a sliding mode disturbance observer, International Journal of Control, 77, 7, 622-629 (2004) · Zbl 1062.93006
[10] Frank, P. M., Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy — A survey and some new results, Automatica, 26, 459-474 (1990) · Zbl 0713.93052
[11] Garciá, E. A.; Frank, P. M., Deterministic nonlinear observer-based approaches to fault diagnosis: A survey, IFAC Control Engineering Practice, 5, 663-670 (1997)
[12] Gertler, J. J., Fault detection and diagnosis in engineering systems (1998), Marcel Dekker: Marcel Dekker New York, NY
[13] Hammouri, H.; Kinnaert, M.; El Yaagoubi, E. H., Observer-based approach to fault detection and isolation for nonlinear systems, IEEE Transactions on Automatic Control, 44, 10, 1879-1884 (1999) · Zbl 0956.93005
[14] Ioannou, P. A.; Sun, J., Robust adaptive control (1996), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0839.93002
[15] Isermann, R., Fault-diagnosis systems : An introduction from fault detection to fault tolerance (2006), Springer: Springer Berlin
[16] Jiang, B.; Staroswiechi, M.; Cocquempot, V., Fault diagnosis based on adaptive observer for a class of nonlinear systems with unknown parameters, International Journal of Control, 77, 4, 415-426 (2004) · Zbl 1098.93013
[17] Kabore, P.; Wang, H., Design of fault diagnosis filters and fault tolerant control for a class of nonlinear systems, IEEE Transactions on Automatic Control, 46, 1805-1810 (2001) · Zbl 1006.93068
[19] Mhaskar, P.; Gani, A.; El-Farra, N. H.; McFall, C.; Christofides, P. D.; Davis, J. F., Integrated fault-detection and fault-tolerant control of process systems, AIChE Journal, 52, 6, 2129-2148 (2006)
[20] Mhaskar, P.; McFall, C.; Gani, A.; Christofides, P. D.; Davis, J. F., Isolation and handling of actuator faults in nonlinear systems, Automatica, 44, 53-62 (2008) · Zbl 1138.93330
[21] De Persis, C.; Isidori, A., A geometric approach to nonlinear fault detection and isolation, IEEE Transactions on Automatic Control, 46, 853-865 (2001) · Zbl 1009.93003
[22] Polycarpou, M. M.; Helmicki, M. A., Automated fault detection and accommodation: a learning systems approach, IEEE Transactions on Systems, Man and Cybernetics, 25, 11, 1447-1458 (1995)
[23] Raghavan, S.; Hedrick, J. K., Observer design for a class of nonlinear systems, International Journal of Control, 56, 2, 515-528 (1994) · Zbl 0802.93007
[24] Spong, M. W.; Vidyasagar, M., Robot dynamics and control (1989), John Wiley and Sons: John Wiley and Sons New York
[25] Tang, X.; Tao, G.; Joshi, S. M., Adaptive actuator failure compensation for nonlinear mimo systems with an aircraft control application, Automatica, 43, 1869-1883 (2007) · Zbl 1132.93331
[26] Tao, G.; Joshi, S. M.; Ma, X., Adaptive state feedback and tracking control of systems with actuator failures, IEEE Transactions on Automatic Control, 46, 1, 78-95 (2001) · Zbl 0992.93043
[27] Vemuri, A. T.; Polycarpou, M. M., Robust nonlinear fault diagnosis in input-output systems, International Journal of Control, 68, 2, 343-360 (1997) · Zbl 0887.93022
[28] Vijayaraghavan, K.; Rajamani, R.; Bokor, J., Quantitative fault estimation for a class of nonlinear systems, International Journal of Control, 80, 1, 64-74 (2007) · Zbl 1115.93040
[29] Wang, H.; Huang, Z. J.; Daley, S., On the use of adaptive updating rules for actuator and sensor fault diagnosis, Automatica, 33, 217-225 (1997) · Zbl 0874.93058
[30] Xu, A.; Zhang, Q., Nonlinear system fault diagnosis based on adaptive estimation, Automatica, 40, 1181-1193 (2004) · Zbl 1056.93034
[31] Yan, X.; Edwards, C., Nonlinear robust fault reconstruction and estimation using a sliding mode observer, Automatica, 43, 1605-1614 (2007) · Zbl 1128.93389
[32] Zhang, X.; Parisini, T.; Polycarpou, M. M., Adaptive fault-tolerant control of nonlinear uncertain systems: A diagnostic information based approach, IEEE Transactions on Automatic Control, 49, 8, 1259-1274 (2004) · Zbl 1365.93250
[33] Zhang, X.; Parisini, T.; Polycarpou, M. M., Sensor bias fault isolation in a class of nonlinear systems, IEEE Transactions on Automatic Control, 50, 370-376 (2005) · Zbl 1365.93535
[34] Zhang, X.; Polycarpou, M. M.; Parisini, T., Robust fault isolation of a class of nonlinear input-output systems, International Journal of Control, 74, 13, 1295-1310 (2001) · Zbl 1051.93041
[35] Zhang, X.; Polycarpou, M. M.; Parisini, T., A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems, IEEE Transactions on Automatic Control, 47, 4, 576-593 (2002) · Zbl 1125.93358
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.