×

Homogenization of a Darcy-Stokes system modeling vuggy porous media. (English) Zbl 1197.76122

Summary: We derive a macroscopic model for single-phase, incompressible, viscous fluid flow in a porous medium with small cavities called vugs. We model the vuggy medium on the microscopic scale using Stokes equations within the vugular inclusions, Darcy’s law within the porous rock, and a Beavers-Joseph-Saffman boundary condition on the interface between the two regions. We assume periodicity of the medium and obtain uniform energy estimates independent of the period. Through a two-scale homogenization limit as the period tends to zero, we obtain a macroscopic Darcy’s law governing the medium on larger scales. We also develop some needed generalizations of the two-scale convergence theory needed for our bimodal medium, including a two-scale convergence result on the Darcy-Stokes interface. The macroscopic Darcy permeability is computable from the solution of a cell problem. An analytic solution to this problem in a simple geometry suggests that: (1) flow along vug channels is primarily Poiseuille with a small perturbation related to the Beavers-Joseph slip, and (2) flow that alternates from vug to matrix behaves as if the vugs have infinite permeability.

MSC:

76S05 Flows in porous media; filtration; seepage
76M50 Homogenization applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992) · Zbl 0770.35005 · doi:10.1137/0523084
[2] Allaire, G., Damlamain, A., Hornung, U.: Two-scale convergence on periodic surfaces and applications. In: Bourgeat, A. et al. (eds.) Proceedings of the International Conference on Mathematical Modelling of Flow Through Porous Media (May 1995), pp. 15–25. World Scientific Pub., Singapore (1996)
[3] Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium (in press). · Zbl 1186.76660
[4] Arbogast, T., Douglas Jr., J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–836 (1990) · Zbl 0698.76106 · doi:10.1137/0521046
[5] Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973) · Zbl 0258.65108 · doi:10.1007/BF01436561
[6] Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972) · Zbl 1191.76001
[7] Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967) · doi:10.1017/S0022112067001375
[8] Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structure. North Holland, Amsterdam (1978) · Zbl 0404.35001
[9] Bouchitté, G., Fragala, I.: Homogenization of thin structures by the two-scale method with respect to measures. SIAM J. Math. Anal. 32(6), 1198–1226 (2001) · Zbl 0986.35015 · doi:10.1137/S0036141000370260
[10] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994) · Zbl 0804.65101
[11] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO 8, 129–151 (1974) · Zbl 0338.90047
[12] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991) · Zbl 0788.73002
[13] Gartling, D.K., Hickox, C.E., Givler, R.C.: Simulation of coupled viscous and porous flow problems. Comp. Fluid Dyn. 7, 23–48 (1996) · Zbl 0879.76104 · doi:10.1080/10618569608940751
[14] Hornung, U. (ed.): Homogenization and Porous Media, Interdisciplinary Applied Mathematics Series. Springer-Verlag, New York (1997) · Zbl 0872.35002
[15] Jäger, W., Mikelić, A.: On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Sc. Norm. Super. Pisa, Classe Fis. Mat. Ser. IV 23, 403–465 (1996) · Zbl 0878.76076
[16] Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000) · Zbl 0969.76088 · doi:10.1137/S003613999833678X
[17] Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functions. Springer-Verlag, New York (1994)
[18] Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Philol. Soc. 73, 231–238 (1973) · Zbl 0262.76061 · doi:10.1017/S0305004100047642
[19] Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003) · Zbl 1037.76014 · doi:10.1137/S0036142901392766
[20] Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications 1. Springer-Verlag, Berlin (1970) · Zbl 0197.06701
[21] Neuss-Radu, M.: Some extensions of two-scale convergence. C. R. Acad. Sci., Sér. 1 Math. 322, 899–904 (1996) · Zbl 0852.76087
[22] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989) · Zbl 0688.35007 · doi:10.1137/0520043
[23] Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier, Amsterdam (1977)
[24] Saffman, P.G.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971) · Zbl 0271.76080
[25] Salinger, A.G., Aris, R., Derby, J.J.: Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains. Int. J. Numer. Methods Fluids 18, 1185–1209 (1994) · Zbl 0807.76039 · doi:10.1002/fld.1650181205
[26] Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory, no. 127 in Lecture Notes in Physics. Springer-Verlag, New York (1980) · Zbl 0432.70002
[27] Tartar, L.: Incompressible fluid flow in a porous medium–convergence of the homogenization process. In: Non-homogeneous Media and Vibration Theory, E. Sanchez-Palencia, Lecture Notes in Physics 127, pp. 368–377. Springer-Verlag, Berlin (1980)
[28] Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis, 2nd ed. North-Holland, Amsterdam (1979) · Zbl 0426.35003
[29] Whitaker, S.: Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986) · doi:10.1007/BF01036523
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.