×

A phase-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solutions. (English) Zbl 1197.65086

Summary: A new Runge-Kutta-Nyström method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge-Kutta-Nyström method of algebraic order four with four (three effective) stages. Numerical illustrations indicate that the new method is much more efficient than other methods derived, based on the idea of minimal phase lag or of phase lag of order infinity.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Dormand, J. R.; El-Mikkawy, M. E.A.; Prince, P. J., Families of Runge-Kutta-Nyström formulae, IMA J. Numer. Anal., 7, 235-250 (1987) · Zbl 0624.65059
[2] Brusa, L.; Nigro, L., A one-step method for direct integration of structural dynamic equations, Int. J. Numer. Methods Engin., 15, 685-699 (1980) · Zbl 0426.65034
[3] van der Houwen, P. J.; Sommeijer, B. P., Explicit Runge-Kutta-Nyström methods with reduced phase errors for computing oscillating solutions, SIAM J. Numer. Anal., 24, 595-617 (1987) · Zbl 0624.65058
[4] Chawla, M. M.; Rao, P. S., A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems, J. Comput. Appl. Math., 11, 277-281 (1984) · Zbl 0565.65041
[5] Chawla, M. M.; Rao, P. S., A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems, II. Explicit method, J. Comput. Appl. Math., 15, 329-337 (1986) · Zbl 0598.65054
[6] Chawla, M. M.; Rao, P. S., An explicit sixth-order method with phase-lag of order eight for \(y'' = f(t, y)\), J. Comput. Appl. Math., 17, 365-368 (1987) · Zbl 0614.65084
[7] Van de Vyver, H., A symplectic Runge-Kutta-Nyström method with minimal phase-lag, Physics Letters A, 367, 16-24 (2007) · Zbl 1209.65075
[8] Van de Vyver, H., An embedded phase-fitted modified Runge-Kutta method for the numerical integration of the radial Schrödinger equation, Physics Letters A, 352, 278-285 (2006) · Zbl 1187.65078
[9] Simos, T. E.; Dimas, E.; Sideridis, A. B., A Runge-Kutta-Nyström for the numerical integration of special second-order periodic initial-value problems, J. Comput. Appl. Math., 51, 317-326 (1994) · Zbl 0872.65066
[10] Simos, T. E., A Runge-Kutta-Fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution, Comput. Math. Appl., 25, 95-101 (1993) · Zbl 0777.65046
[11] Simos, T. E., Runge-Kutta-Nyström interpolants for the numerical integration of special second-order periodic initial-value problems, Comput. Math. Appl., 26, 7-15 (1993) · Zbl 0792.65054
[12] Simos, T. E.; Aguiar, Jesús Vigo, A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems, Computers and Chemistry, 25, 275-281 (2001) · Zbl 1064.65069
[13] Simos, T. E., Some modified Runge-Kutta methods for the numerical solution of initial-value problems with oscillating solutions, J. Scientific Computing, 13, 1 (1998) · Zbl 1001.65080
[14] E. Fehlberg, Classical eight and lower-order Runge-Kutta-Nyström formulas with stepsize control for special second-order differential equations, NASA Technical Report, R-381, 1972; E. Fehlberg, Classical eight and lower-order Runge-Kutta-Nyström formulas with stepsize control for special second-order differential equations, NASA Technical Report, R-381, 1972
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.