×

Random attractors for a Ginzburg-Landau equation with additive noise. (English) Zbl 1197.37098

Summary: The existence of a compact random attractor for the random dynamical system generated by the complex Ginzburg-Landau equation with additive white noise has been proved. And a precise estimate of the upper bound of the Hausdorff dimension of the random attractor is obtained.
Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:

37L30 Attractors and their dimensions, Lyapunov exponents for infinite-dimensional dissipative dynamical systems
35B41 Attractors
35Q53 KdV equations (Korteweg-de Vries equations)
37H10 Generation, random and stochastic difference and differential equations
60H25 Random operators and equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Buzea, C. G.; Agop, M.; Galusca, G.; Vizureanu, P.; Ionita, I., El Naschie’s superconductivity in the time dependent Ginzburg-Landau model, Chaos, Solitons & Fractals, 34, 4, 1060-1074 (2007)
[2] Caraballo, T.; Langa, J. A.; Robinson, J. C., Upper semicontinuity of attractors for random perturbations of dynamical systems, Commun Partial Differen Equat, 23, 1557-1581 (1998) · Zbl 0917.35169
[3] Constantin, P.; Foias, C., Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Commun Pure Appl Math, 38, 1-27 (1985) · Zbl 0582.35092
[4] Crauel, H.; Flandoli, F., Attractors for random dynamical systems, Prob Theory Relat Fields, 100, 365-393 (1994) · Zbl 0819.58023
[5] Crauel, H.; Debussche, A.; Flandoli, F., Random attractors, J Dynam Differen Equat, 9, 307-341 (1997) · Zbl 0884.58064
[6] Crauel, H.; Flandoli, F., Hausdorff dimension of invariant sets for random dynamical systems, J Dyn Differen Equat, 10, 3, 449-474 (1998) · Zbl 0927.37031
[7] Crauel, H., Global random attractors are uniquely determined by attracting deterministic compact sets, Ann Mat Pura Appl, 176, 57-72 (1999) · Zbl 0954.37027
[8] Debussche, A., On the finite dimensionality of random attractors, Stoch Anal Appl, 15, 473-492 (1997) · Zbl 0888.60051
[9] Debussche, A., Hausdorff dimension of a random invariant set, J Math Pures Appl, 77, 967-988 (1998) · Zbl 0919.58044
[10] Eden, A.; Foias, C.; Nicolaenko, B.; Temam, R., Exponential attracoters for dissipative evolution equations (1994), RAM Wiley: RAM Wiley Chichester · Zbl 0842.58056
[11] Foias, C.; Prodi, G., Sur le comportement global des solutions non-stationnaires des equations de Navier-Stokes en dimension 2, Rend Sem Mat Univ Padova, 39, 1-34 (1967) · Zbl 0176.54103
[12] Foias, C.; Olson, E. J., Finite fractal dimension and Hölder-Lipschitz parametrization, Indiana Univ Math J, 45, 603-616 (1996) · Zbl 0887.54034
[13] Jolly, M. S.; Témam, R.; Xiong, C., Convergence of a chaotic attractor with increased spatial resolution of the Ginzburg-Landau equation, Chaos, Solitons & Fractals, 5, 10, 1833-1845 (1995) · Zbl 1080.34551
[14] Lv, Y.; Sun, J. H., Dynamical behavior for stochastic lattice systems, Chaos, Solitons & Fractals, 27, 4, 1080-1090 (2006) · Zbl 1134.37350
[15] Mohamadou, A.; Jiotsa, A. K.; Kofané, T. C., Pattern selection and modulational instability in the one-dimensional modified complex GinzburgCLandau equation, Chaos, Solitons & Fractals, 24, 4, 957-966 (2005) · Zbl 1068.35015
[16] Robinson, J. C., Global attractors: topology and finite-dimensional dynamics, J Dyn Differen Equat, 11, 557-581 (1999) · Zbl 0953.34049
[17] Schamalfuss B. Backward cocycles and attractors of stochasitic differential equations. In: Reitmann V, Riedrich T, Koksch N, editors, International seminar on applied mathematics-nonlinear dynamics: attractor approximation and global behaviour; 1992. p. 185-92.; Schamalfuss B. Backward cocycles and attractors of stochasitic differential equations. In: Reitmann V, Riedrich T, Koksch N, editors, International seminar on applied mathematics-nonlinear dynamics: attractor approximation and global behaviour; 1992. p. 185-92.
[18] Temam, R., Infinite-dimensional dynamical system in mechanics and physics (1983), Springer: Springer New York · Zbl 0523.49030
[19] Xu, P. C.; Chang, Q. S., Homoclinic orbit for the cubic-quintic Ginzburg-Landau equation, Chaos, Solitons & Fractals, 10, 7, 1161-1170 (1999) · Zbl 0985.37019
[20] Yang, D. S., The asymptotic behavior of the stochastic Gingzburg-Landau equation with multiplicative noise, J Math Phys, 45, 11, 4064-4076 (2004) · Zbl 1064.37038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.