×

New travelling wave solutions to the Ostrovsky equation. (English) Zbl 1195.35274

Summary: New travelling wave solutions to the Ostrovsky equation are studied by employing the improved tanh function method. With this method, the Ostrovsky equation is reduced to the nonlinear ordinary differential equation and then the different types of exact solutions are derived based on the solutions of the Riccati equation. We compare our solutions with those gained by the other methods.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35A30 Geometric theory, characteristics, transformations in context of PDEs
35A24 Methods of ordinary differential equations applied to PDEs
35C07 Traveling wave solutions

Software:

Maple
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gradner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097 (1967) · Zbl 1061.35520
[2] Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192-1194 (1971) · Zbl 1168.35423
[3] He, J. H.; Abdou, M. A., New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos, Solitons Fractals, 34, 1421-1429 (2007) · Zbl 1152.35441
[4] He, J. H.; Zhang, L. N., Generalized solitary solution and compaction-like solution of the Jaulent-Miodek equations using the Exp-function method, Phys. Lett. A, 372, 1044-1047 (2008) · Zbl 1217.35152
[5] He, J. H.; Wu, X. H., Exp-function method for nonlinear wave equations, Chaos, Solitons Fractals, 30, 700-708 (2006) · Zbl 1141.35448
[6] He, J. H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178, 257-262 (1999) · Zbl 0956.70017
[7] Abdou, M. A., The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos, Solitons Fractals, 31, 95-104 (2007) · Zbl 1138.35385
[8] He, J. H., Variational iteration method – some recent results and new interpretations, J. Comp. Appl. Math., 207, 3-17 (2007) · Zbl 1119.65049
[9] Li, Z. B.; Wang, M. L., Travelling wave solutions to the two-dimensional KdV-Burgers equation, J. Phys. A Math. Gen., 26, 6027-6032 (1993) · Zbl 0809.35111
[10] Wang, M. L., Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 199, 169-172 (1995) · Zbl 1020.35528
[11] Sirendaoreji; Jiong, S., Auxiliary equation method for solving nonlinear partial differential equations, Phys. Lett. A, 309, 387-396 (2003) · Zbl 1011.35035
[12] Chen, H. T.; Zhang, H. Q., New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation, Chaos, Solitons Fractals, 19, 71-76 (2004) · Zbl 1068.35126
[13] Ozer, T., New exact solutions to the CDF equations, Chaos, Solitons Fractals, 39, 1371-1385 (2009) · Zbl 1197.35246
[14] Inan, I. E.; Kaya, D., Some exact solutions to the potential Kadomtsev-Petviashvili equation and to a system of shallow water wave equations, Phys. Lett. A, 355, 314-318 (2006) · Zbl 1387.35527
[15] Ostrovsky, L. A., Nonlinear internal waves in a rotating ocean, Oceanology, 18, 119-125 (1978)
[16] Vakhnenko, V. O.; Parkes, E. J., The two loop soliton of the Vakhnenko equation, Nonlinearity, 11, 1457-1464 (1998) · Zbl 0914.35115
[17] Yusufoglu, E.; Bekir, A., A travelling wave solution to the Ostrovsky equation, Appl. Math. Comput., 186, 256-260 (2007) · Zbl 1110.76010
[18] Kangalgil, F.; Ayaz, F., New exact travelling wave solutions for the Ostrovsky equation, Phys. Lett. A, 372, 1831-1835 (2008) · Zbl 1220.35098
[19] Olver, P. J., Application of Lie Groups to Differential Equations (1993), Springer-Verlag: Springer-Verlag New York
[20] Stepanyants, Y. A., On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons, Chaos, Solitons & Fractals, 28, 193-204 (2006) · Zbl 1088.35531
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.