×

A free boundary problem modeling the cell cycle and cell movement in multicellular tumor spheroids. (English) Zbl 1178.35387

A nonlinear system of reaction-diffusion-advection equations with free boundary is proposed to model the cell cycle dynamics and chemotactic driven cell movements in a multicellular tumor spheroid. There are two types of tumor cells: proliferating cells and quiescent cells, which have different chemotactic responses to an extracellular nutrient supply. Let \(c(r,t)\) be the concentration of nutrient, \(p(r,t)\) and \(q(r,t)\) the proliferating and quiescent cell densities respectively, \(u_p(r,t)\) and \(u_q(r,t)\) the velocities of proliferating and quiescent cells respectively, and \(R(t)\) the radius of the spheroid. Then for \(0<r<R(t)\), \(t>0\), \[ \begin{aligned} {1\over r^2}{\partial \over \partial r}\left(r^2{\partial c\over \partial r}\right) & = \lambda(c)c, \\ {\partial p\over \partial t}+{1\over r^2}{\partial \over \partial r}(r^2(u_pp)) & = D{1\over r^2}{\partial \over \partial r}\left(r^2{\partial p\over \partial r}\right)+(K_b(c)-K_q(c)-K_a(c))p+K_p(c)q, \\ {\partial q\over \partial t}+{1\over r^2}{\partial \over \partial r}(r^2(u_qq)) & = D{1\over r^2}{\partial \over \partial r}\left(r^2{\partial q\over \partial r}\right)+K_q(c)p-(K_d(c)+K_p(c))q. \end{aligned} \] The unknown functions \(c,p,q,u_p,u_q\) satisfy the conditions \(p+q=N\) and \(u_q(r,t)=u_p(r,t)+\chi{\partial c\over \partial r}\) for some constant \(N\) (total number of live cells per volume) and a parameter \(\chi\). In addition, appropriate boundary and initial conditions are assumed. Using a fixed point argument and the \(L^p\)-theory for parabolic equations, the author proves the global existence and uniqueness of solutions to the model.

MSC:

35R35 Free boundary problems for PDEs
92C17 Cell movement (chemotaxis, etc.)
35K35 Initial-boundary value problems for higher-order parabolic equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Byrne, H. M.; Chaplain, M. A.J., Growth of nonnecrotic tumours in the presence and absence of inhibitors, Math. Biosci., 130, 151-181 (1995) · Zbl 0836.92011
[2] Byrne, H. M.; Chaplain, M. A.J., Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135, 187-216 (1996) · Zbl 0856.92010
[3] Chaplain, M. A.J.; Lolas, G., Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15, 1685-1734 (2005) · Zbl 1094.92039
[4] Chen, X.; Cui, S.; Friedman, A., A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior, Trans. Amer. Math. Soc., 357, 4771-4804 (2005) · Zbl 1082.35166
[5] Chen, X.; Friedman, A.; Hu, B., A parabolic-hyperbolic quasilinear system, Comm. Partial Differential Equations, 33, 969-987 (2008) · Zbl 1158.35004
[6] Cui, S., Global existence of solutions for a free boundary problem modeling the growth of necrotic tumors, Interfaces Free Bound., 7, 147-159 (2005) · Zbl 1078.35139
[7] Cui, S.; Friedman, A., A hyperbolic free boundary problem modeling tumor growth, Interfaces Free Bound., 5, 159-181 (2003) · Zbl 1040.35143
[8] Cui, S.; Friedman, A., A free boundary problem for a singular system of differential equations: An application to a model of tumor growth, Trans. Amer. Math. Soc., 355, 3537-3590 (2003) · Zbl 1036.34018
[9] Friedman, A., Cancer models and their mathematical analysis, (Lecture Notes in Math., vol. 1872 (2006)), 223-246
[10] Friedman, A.; Hu, B., Bifurcation from stability to instability for a free boundary problem arising in a tumor model, Arch. Ration. Mech. Anal., 172, 267-294 (2004)
[11] Friedman, A.; Hu, B., Asymptotic stability for a free boundary problem arising in a tumor model, J. Differential Equations, 227, 598-639 (2006) · Zbl 1136.35106
[12] Friedman, A.; Lolas, G., Analysis of a mathematical model of tumor lymphangiogenesis, Math. Models Methods Appl. Sci., 1, 95-107 (2005) · Zbl 1060.92036
[13] Friedman, A.; Reitich, F., Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38, 262-284 (1999) · Zbl 0944.92018
[14] Friedman, A.; Reitich, F., Quasi-state motion of a capillary drop, I: The two dimensional case, J. Differential Equations, 178, 212-263 (2001) · Zbl 0993.76017
[15] Friedman, A.; Reitich, F., Quasi-state motion of a capillary drop, II: The three dimensional case, J. Differential Equations, 186, 509-557 (2002) · Zbl 1146.76593
[16] Friedman, A.; Tao, Y., Analysis of a model of a virus that replicates selectively in tumor cells, J. Math. Biol., 47, 391-423 (2003) · Zbl 1052.92027
[17] Friedman, A.; Tian, J. P.; Fulci, G.; Chiocca, E. A.; Wang, J., Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Res., 66, 2314-2319 (2006)
[18] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (2001), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0691.35001
[19] Greenspan, H., Models for the growth of solid tumor by diffusion, Stud. Appl. Math., 51, 317-340 (1972) · Zbl 0257.92001
[20] Jackson, T. L., Vascular tumor growth and treatment: Consequence of polyclonality, competition and dynamic vascular support, J. Math. Biol., 44, 201-226 (2002) · Zbl 0992.92032
[21] Ladyzenskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Transl., vol. 23 (1968), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI
[22] Lieberman, G. M., Second Order Parabolic Differential Equations (1996), World Scientific · Zbl 0884.35001
[23] Norris, E. S.; King, J. R.; Byrne, H. M., Modelling the response of spatially structured tumours to chemotherapy: Drug kinetics, Math. Comput. Modelling, 43, 820-837 (2006) · Zbl 1130.92033
[24] Pettet, G.; Please, C.; Tindall, M.; McElwain, D., The migration of cells in multicell tumor spheroids, Bull. Math. Biol., 63, 231-257 (2001) · Zbl 1323.92037
[25] Sherrat, J.; Chaplain, M., A new mathematical model for avascular tumor growth, J. Math. Biol., 43, 291-312 (2001) · Zbl 0990.92021
[26] Tao, Y.; Chen, M., An elliptic-hyperbolic free boundary problem modelling cancer therapy, Nonlinearity, 19, 419-440 (2006) · Zbl 1105.35149
[27] Tao, Y.; Guo, Q., The competitive dynamics between tumor cells, a replication-competent virus and an immune response, J. Math. Biol., 51, 37-74 (2005) · Zbl 1066.92035
[28] Tao, Y.; Guo, Q., A free boundary problem modelling cancer radiovirotherapy, Math. Models Methods Appl. Sci., 17, 1241-1259 (2007) · Zbl 1141.35476
[29] Tao, Y.; Yoshida, N.; Guo, Q., Nonlinear analysis of a model of vascular tumour growth and treatment, Nonlinearity, 17, 867-895 (2004) · Zbl 1073.35215
[30] Tao, Y.; Zhang, H., A parabolic-hyperbolic free boundary problem modelling tumor treatment with virus, Math. Models Methods Appl. Sci., 17, 63-80 (2007) · Zbl 1115.35137
[31] Tindall, M.; Please, C., Modelling the cell cycle and cell movement in multicellular tumour spheroids, Bull. Math. Biol., 69, 1147-1165 (2007) · Zbl 1298.92021
[32] Ward, J. P.; King, J. R., Mathematical modelling of avascular tumor growth, IMA J. Math. Appl. Med. Biol., 14, 39-69 (1997) · Zbl 0866.92011
[33] Ward, J. P.; King, J. R., Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures, Math. Biosci., 181, 177-207 (2003) · Zbl 1014.92021
[34] Wei, X.; Cui, S., Global well-posedness for a drug transport model in tumor multicell spheroids, Math. Comput. Modelling, 45, 553-563 (2007) · Zbl 1165.35318
[35] Wu, J. T.; Byrne, H. M.; Kirn, D. H.; Wein, L. M., Modeling and analysis of a virus that replicates selectively in tumor cells, Bull. Math. Biol., 63, 731-768 (2001) · Zbl 1323.92112
[36] Wu, J. T.; Kirn, D. H.; Wein, L. M., Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response, Bull. Math. Biol., 66, 605-625 (2004) · Zbl 1334.92243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.