×

Generalized projective synchronization of the fractional-order Chen hyperchaotic system. (English) Zbl 1176.70029

Summary: We numerically investigate the hyperchaotic behaviors in the fractional-order Chen hyperchaotic systems. By utilizing the fractional calculus techniques, we find that hyperchaos exists in the fractional-order Chen hyperchaotic system with the order less than 4. We found that the lowest order for hyperchaos to have in this system is 3.72. Our results are validated by the existence of two positive Lyapunov exponents. The generalized projective synchronization method is also presented for synchronizing the fractional-order Chen hyperchaotic systems. The present technique is based on the Laplace transform theory. This simple and theoretically rigorous synchronization approach enables synchronization of fractional-order hyperchaotic systems to be achieved and does not require the computation of the conditional Lyapunov exponents. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme.

MSC:

70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[2] Hifer, R.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2001)
[3] Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984) · Zbl 0544.73052 · doi:10.1115/1.3167616
[4] Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984). doi: 10.1109/TAC.1984.1103551 · Zbl 0532.93025 · doi:10.1109/TAC.1984.1103551
[5] Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971)
[6] Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971) · JFM 30.0801.03
[7] Oustaloup, A., Levron, F., Nanot, F., Mathieu, B.: Frequency band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst.-I 47, 25–40 (2000) · doi:10.1109/81.817385
[8] Chen, Y.Q., Moore, K.: Discretization schemes for fractional order differentiators and integrators. IEEE Trans. Circuits Syst.-I 49, 363–367 (2000) · Zbl 1368.65035 · doi:10.1109/81.989172
[9] Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29, 201–233 (2002). doi: 10.1023/A:1016534921583 · Zbl 1021.93019 · doi:10.1023/A:1016534921583
[10] Hwang, C., Leu, J.F., Tsay, S.Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47, 625–631 (2002). doi: 10.1109/9.995039 · Zbl 1364.93772 · doi:10.1109/9.995039
[11] Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst.-I 42, 485–490 (1995) · doi:10.1109/81.404062
[12] Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Chaos in a fractional order Duffing system. In: Proceedings of European Conference on Circuit Theory and Design, Budapest, pp. 1259–1262 (1997)
[13] Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003). doi: 10.1103/PhysRevLett.91.034101 · Zbl 1234.49040 · doi:10.1103/PhysRevLett.91.034101
[14] Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339–351 (2003). doi: 10.1016/S0960-0779(02)00438-1 · Zbl 1033.37019 · doi:10.1016/S0960-0779(02)00438-1
[15] Ahmad, W.M., Harb, A.M.: On nonlinear control design for autonomous chaotic systems of integer and fractional orders. Chaos Solitons Fractals 18, 693–701 (2003). doi: 10.1016/S0960-0779(02)00644-6 · Zbl 1073.93027 · doi:10.1016/S0960-0779(02)00644-6
[16] Li, C.G., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004). doi: 10.1016/j.physa.2004.04.113 · doi:10.1016/j.physa.2004.04.113
[17] Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004). doi: 10.1016/j.chaos.2004.02.013 · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[18] Li, C.G., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22, 549–554 (2004). doi: 10.1016/j.chaos.2004.02.035 · Zbl 1069.37025 · doi:10.1016/j.chaos.2004.02.035
[19] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002). doi: 10.1016/S0370-1573(02)00331-9 · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[20] Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990). doi: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[21] Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with application to communication. Phys. Rev. Lett. 74, 5028–5031 (1995). doi: 10.1103/PhysRevLett.74.5028 · doi:10.1103/PhysRevLett.74.5028
[22] Lakshmanan, M., Murali, K.: Chaos in Nonlinear Oscillators: Controlling and Synchronization. World Scientific, Singapore (1996) · Zbl 0868.58058
[23] Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore (1998) · Zbl 0908.93005
[24] Wu, X.J.: A new chaotic communication scheme based on adaptive synchronization. Chaos 16, 043118 (2006). doi: 10.1063/1.2401058 · Zbl 1151.94586 · doi:10.1063/1.2401058
[25] Rosenblum, M.G., Pikovsky, A.S., Kurtz, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996). doi: 10.1103/PhysRevLett.76.1804 · doi:10.1103/PhysRevLett.76.1804
[26] Pikovsky, A.S., Rosenlum, M.G., Osipov, G., Kurtz, J.: Phase synchronization of chaotic oscillators by external driving. Physica D 104, 219–238 (1997). doi: 10.1016/S0167-2789(96)00301-6 · Zbl 0898.70015 · doi:10.1016/S0167-2789(96)00301-6
[27] Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4196 (1997). doi: 10.1103/PhysRevLett.78.4193 · Zbl 0896.60090 · doi:10.1103/PhysRevLett.78.4193
[28] Zhang, Y., Sun, J.: Chaotic synchronization and anti-synchronization based on suitable separation. Phys. Lett. A 330, 442–447 (2004). doi: 10.1016/j.physleta.2004.08.023 · Zbl 1209.37039 · doi:10.1016/j.physleta.2004.08.023
[29] Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic system. Phys. Rev. Lett. 82, 3042–3045 (1999). doi: 10.1103/PhysRevLett.82.3042 · doi:10.1103/PhysRevLett.82.3042
[30] Xu, D., Li, Z.: Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems. Chaos 11, 439–442 (2001). doi: 10.1063/1.1380370 · Zbl 0996.37075 · doi:10.1063/1.1380370
[31] Xu, D., Chee, C.Y., Li, C.P.: A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions. Chaos Solitons Fractals 22, 175–180 (2004). doi: 10.1016/j.chaos.2004.01.012 · Zbl 1060.93535 · doi:10.1016/j.chaos.2004.01.012
[32] Li, G.H.: Modified projective synchronization of chaotic system. Chaos Solitons Fractals 32, 1786–1790 (2007). doi: 10.1016/j.chaos.2005.12.009 · Zbl 1134.37331 · doi:10.1016/j.chaos.2005.12.009
[33] Hung, M.L., Yan, J.J., Liao, T.L.: Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input. Chaos Solitons Fractals 35, 181–187 (2008). doi: 10.1016/j.chaos.2006.05.050 · doi:10.1016/j.chaos.2006.05.050
[34] Li, C.G., Liao, X.F., Yu, J.B.: Synchronization of fractional order chaotic systems. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68, 067203 (2003). doi: 10.1103/PhysRevE.68.067203 · doi:10.1103/PhysRevE.68.067203
[35] Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26, 1125–1133 (2005). doi: 10.1016/j.chaos.2005.02.023 . · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023
[36] Li, C.P., Deng, W.H., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Physica A 360, 171–185 (2006). doi: 10.1016/j.physa.2005.06.078 · doi:10.1016/j.physa.2005.06.078
[37] Li, C., Yan, J.: The synchronization of three fractional differential systems. Chaos Solitons Fractals 32, 751–757 (2007). doi: 10.1016/j.chaos.2005.11.020 · doi:10.1016/j.chaos.2005.11.020
[38] Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387, 57–70 (2008). doi: 10.1016/j.physa.2007.08.039 · doi:10.1016/j.physa.2007.08.039
[39] Ge, Z.M., Ou, C.Y.: Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals 35, 705–717 (2008). doi: 10.1016/j.chaos.2006.05.101 · doi:10.1016/j.chaos.2006.05.101
[40] Yu, Y., Li, H.X.: The synchronization of fractional-order Rössler hyperchaotic systems. Physica A 387, 1393–1403 (2008). doi: 10.1016/j.physa.2007.10.052 · doi:10.1016/j.physa.2007.10.052
[41] Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 51, 980–994 (1995) doi: 10.1103/PhysRevE.51.980
[42] Kocarev, L., Parlitz, U.: Generalized synchronization. predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76, 1816–1819 (1996). doi: 10.1103/PhysRevLett.76.1816
[43] Wang, Y.W., Guan, Z.H.: Generalized synchronization of continuous chaotic system. Chaos Solitons Fractals 27, 97–101 (2006). doi: 10.1016/j.chaos.2004.12.038 · Zbl 1083.37515 · doi:10.1016/j.chaos.2004.12.038
[44] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Geophys. J. R. Astron. Soc. 13, 529–539 (1967).
[45] Samko, S.G., Klibas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993)
[46] Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999). doi: 10.1142/S0218127499001024 · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[47] Li, Y.X., Tang, W.K.S., Chen, G.R.: Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos 15, 3367–3375 (2005). doi: 10.1142/S0218127405013988 · doi:10.1142/S0218127405013988
[48] Yan, Z.Y.: Controlling hyperchaos in the new hyperchaotic Chen system. Appl. Math. Comput. 168, 1239–1250 (2005). doi: 10.1016/j.amc.2004.10.016 · Zbl 1160.93384 · doi:10.1016/j.amc.2004.10.016
[49] Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron Trans. Numer. Anal. 5, 1–6 (1997) · Zbl 0890.65071
[50] Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002). doi: 10.1006/jmaa.2000.7194 · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[51] Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002). doi: 10.1023/A:1016592219341 · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[52] Wolf, A., Swinney, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985). doi: 10.1016/0167-2789(85)90011-9 · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[53] Muth, E.J.: Transform Methods with Applications to Engineering and Operations Research. Prentice-Hall, Englewood Cliffs (1977) · Zbl 0392.44001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.