×

PN surfaces and their convolutions with rational surfaces. (English) Zbl 1172.14344

Summary: Rationally parameterized hypersurfaces can be classified with respect to their RC properties (Rational Convolutions) with the help of the Gröbner bases theory. This classification focuses on special classes of rational parameterizations which provide a rational description of convolution hypersurfaces generally (GRC parameterizations), or just in some special cases (SRC parameterizations). The main aim of this paper is to bring the theory of the so-called PN surfaces (surfaces with Pythagorean Normal vectors) and their PN parameterizations (parameterizations fulfilling the PN condition) in relation to the theory of SRC parameterizations and to show that this type of parameterizations can be further classified with respect to the degree of the construction of convolution surfaces. The connection of SRC PN parameterizations to the well-known concepts of proper and square-root parameterizations is also investigated.

MSC:

14Q05 Computational aspects of algebraic curves
65D17 Computer-aided design (modeling of curves and surfaces)
14Q10 Computational aspects of algebraic surfaces
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
68U07 Computer science aspects of computer-aided design
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arrondo, E.; Sendra, J.; Sendra, J. R., Parametric generalized offsets to hypersurfaces, Journal of Symbolic Computation, 23, 267-285 (1997) · Zbl 0878.68134
[2] Aubin, J. P.; Frankowska, H., Set-Valued Analysis (1990), Birkhäuser: Birkhäuser Boston
[3] Bastl, B.; Kosinka, J.; Jüttler, B.; Lávička, M., Computing exact rational offsets of quadratic triangular Bézier surface patches, Computer-Aided Design, 40, 197-209 (2008) · Zbl 1206.65071
[4] Becker, T.; Weispfenning, V., Gröbner Bases—A Computational Approach to Commutative Algebra, Graduate Texts in Mathematics (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0772.13010
[5] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics (1992), Springer-Verlag: Springer-Verlag New York
[6] Farouki, R. T.; Sakkalis, T., Pythagorean hodographs, IBM Journal of Research and Development, 34, 5, 736-752 (1990)
[7] Farouki, R. T., Pythagorean-hodograph curves in practical use, (Barnhill, R. E., Geometry Processing for Design and Manufacturing (1992), SIAM: SIAM Philadelphia), 3-33 · Zbl 0770.41017
[8] Farouki, R. T.; Sakkalis, T., Pythagorean hodograph space curves, Advances in Computational Mathematics, 2, 1, 41-66 (1994) · Zbl 0829.65011
[9] Farouki, R. T.; Neff, C. A., Hermite interpolation by Pythagorean-hodograph quintics, Mathematics of Computation, 64, 212, 1589-1609 (1995) · Zbl 0847.68125
[10] Farouki, R. T., Pythagorean-hodograph curves, (Farin, G.; Hoschek, J.; Kim, M.-S., Handbook of Computer Aided Geometric Design (2002), North-Holland), 405-427
[11] Farouki, R. T.; Manni, C.; Sestini, A., Spatial \(C^2\) PH quintic splines, (Lynche, T.; Mazure, M. L.; Schumaker, L. L., Curve and Surface Design. Curve and Surface Design, St. Malo 2002 (2003), Nashboro Press), 147-156 · Zbl 1044.65010
[12] Farouki, R. T.; Sakkalis, T., Rational space curves are not “unit speed”, Computer Aided Geometric Design, 24, 238-240 (2007) · Zbl 1171.65331
[13] Gravesen, J.; Jüttler, B.; Šír, Z., On rationally supported surfaces, Computer Aided Geometric Design, 25, 320-331 (2008) · Zbl 1172.53303
[14] Jüttler, B., Triangular Bézier surface patches with linear normal vector field, (Cripps, R., The Mathematics of Surfaces VIII (1998), Information Geometers), 431-446 · Zbl 0959.65038
[15] Jüttler, B.; Sampoli, M. L., Hermite interpolation by piecewise polynomial surfaces with rational offsets, Computer Aided Geometric Design, 17, 361-385 (2000) · Zbl 0938.68123
[16] Jüttler, B., Hermite interpolation by Pythagorean hodograph curves of degree seven, Mathematics of Computation, 70, 1089-1111 (2001) · Zbl 0963.68210
[17] Kosinka, J.; Jüttler, B., \(G^1\) Hermite interpolation by Minkowski Pythagorean hodograph cubics, Computer Aided Geometric Design, 23, 401-418 (2006) · Zbl 1093.41004
[18] Krasauskas, R., PN-surfaces for blending applications. In: Electronic Proceedings of Effective Methods in Algebraic Geometry (MEGA) [cit. 2007/08/11]
[19] Lávička, M.; Bastl, B., Rational hypersurfaces with rational convolutions, Computer Aided Geometric Design, 24, 410-426 (2007) · Zbl 1171.65341
[20] Lü, W., Rationality of the offsets to algebraic curves and surfaces, Applied Mathematics, A Journal of Chinese Universities, Series B, 9, 265-277 (1994) · Zbl 0814.14048
[21] Lü, W., Offset-rational parametric plane curves, Computer-Aided Design, 12, 601-616 (1995) · Zbl 0875.68853
[22] Lü, W.; Pottmann, H., Pipe surfaces with rational spine curve are rational, Computer Aided Geometric Design, 13, 621-628 (1996) · Zbl 0900.68410
[23] Lü, W.; Pottmann, H., Rational parameterization of quadrics and their offsets, Computing, 57, 135-147 (1996) · Zbl 0855.68113
[24] Maekawa, T., An overview of offset curves and surfaces, Computer-Aided Design, 31, 165-173 (1999) · Zbl 1053.68747
[25] Moon, H. P., Minkowski Pythagorean hodographs, Computer Aided Geometric Design, 16, 739-753 (1999) · Zbl 0997.65023
[26] Pelosi, F.; Sampoli, M. L.; Farouki, R. T.; Manni, C., A control polygon scheme for design of planar \(C^2\) PH quintic spline curves, Computer Aided Geometric Design, 24, 28-52 (2007) · Zbl 1171.65347
[27] Pérez-Díaz, S., On the problem of proper reparametrization for rational curves and surfaces, Computer Aided Geometric Design, 23, 307-323 (2006) · Zbl 1102.65018
[28] Pérez-Díaz, S.; Schicho, J.; Sendra, J. R., Properness and inversion of rational parametrizations of surfaces, Applicable Algebra in Engineering Communication and Computing, 13, 29-51 (2002) · Zbl 0993.14022
[29] Peternell, M.; Pottmann, H., A Laguerre geometric approach to rational offsets, Computer Aided Geometric Design, 15, 223-249 (1998) · Zbl 0903.68190
[30] Peternell, M.; Manhart, F., The convolution of a paraboloid and a parametrized surface, Journal for Geometry and Graphics, 7, 157-171 (2003) · Zbl 1056.51016
[31] Peternell, M.; Odehnal, B., Convolution surfaces of quadratic triangular Bézier surfaces, Computer Aided Geometric Design, 25, 116-129 (2008) · Zbl 1172.65343
[32] Pham, B., Offset curves and surfaces: A brief survey, Computer-Aided Design, 24, 223-229 (1992)
[33] Piegl, L. A.; Tiller, W., Computing offsets of NURBS curves and surfaces, Computer-Aided Design, 31, 147-156 (1999) · Zbl 1053.68749
[34] Pottmann, H., Rational curves and surfaces with rational offsets, Computer Aided Geometric Design, 12, 175-192 (1995) · Zbl 0872.65011
[35] Pottmann, H.; Peternell, M., Applications of Laguerre geometry in CAGD, Computer Aided Geometric Design, 15, 165-186 (1998) · Zbl 0996.65018
[36] Sampoli, M. L.; Peternell, M.; Jüttler, B., Rational surfaces with linear normals and their convolutions with rational surfaces, Computer Aided Geometric Design, 23, 179-192 (2006) · Zbl 1095.53006
[37] Sendra, J. R.; Sendra, J., Algebraic analysis of offsets to hypersurfaces, Mathematische Zeitschrift, 234, 697-719 (2000) · Zbl 0996.14027
[38] Šír, Z.; Feichtinger, R.; Jüttler, B., Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics, Computer-Aided Design, 38, 608-618 (2006)
[39] Šír, Z.; Gravesen, J.; Jüttler, B., Computing convolutions and Minkowski sums via support functions, (Chenin, P.; Lyche, T.; Schumaker, L. L., Curve and Surface Design. Curve and Surface Design, Avignon 2006 (2007), Nashboro Press), 244-253 · Zbl 1130.65024
[40] Šír, Z.; Jüttler, B., \(C^2\) Hermite interpolation by Pythagorean hodograph space curves, Mathematics of Computation, 76, 1373-1391 (2007) · Zbl 1122.65016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.