×

Limit theorems for quantum walks driven by many coins. (English) Zbl 1165.81318

Summary: We obtain some rigorous results on limit theorems for quantum walks driven by many coins introduced by T. A. Brun, H. A. Carteret and A. Ambainis [Phys. Rev. Lett. 91, 130602 (2003), Phys. Rev. A 67, 062317 (2003) and Phys. Rev. A 67, 032304 (2003)] in the long time limit. The results imply that whether the behavior of a particle is quantum or classical depends on the three factors: the initial qubit, the number of coins \(M, d = [t/M]\), where \(t\) is time step. Our main theorem shows that we can see a transition from classical behavior to quantum one for a class of three factors.

MSC:

81P68 Quantum computation
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/BF02199356 · Zbl 0952.37501 · doi:10.1007/BF02199356
[2] Aharonov Y., Phys. Rev. A 48 pp 1689–
[3] DOI: 10.1103/PhysRevA.67.052307 · doi:10.1103/PhysRevA.67.052307
[4] Konno N., Quant. Inform. Comput. 2 pp 578–
[5] DOI: 10.1103/PhysRevLett.94.100602 · doi:10.1103/PhysRevLett.94.100602
[6] DOI: 10.1080/00107151031000110776 · doi:10.1080/00107151031000110776
[7] DOI: 10.1142/S0219749903000383 · Zbl 1069.81505 · doi:10.1142/S0219749903000383
[8] Kendon V., Math. Struct. Comput. Sci. 17 pp 1169–
[9] DOI: 10.1007/978-3-540-69365-9_7 · Zbl 1329.82011 · doi:10.1007/978-3-540-69365-9_7
[10] DOI: 10.1023/A:1023413713008 · Zbl 1329.82012 · doi:10.1023/A:1023413713008
[11] DOI: 10.2969/jmsj/1150287309 · Zbl 1173.81318 · doi:10.2969/jmsj/1150287309
[12] DOI: 10.1103/PhysRevE.69.026119 · doi:10.1103/PhysRevE.69.026119
[13] DOI: 10.1103/PhysRevLett.91.130602 · doi:10.1103/PhysRevLett.91.130602
[14] Brun T. A., Phys. Rev. A 67 pp 062317–
[15] DOI: 10.1088/0305-4470/37/30/013 · Zbl 1067.82024 · doi:10.1088/0305-4470/37/30/013
[16] DOI: 10.1088/0305-4470/39/26/016 · Zbl 1098.81024 · doi:10.1088/0305-4470/39/26/016
[17] DOI: 10.1016/j.aop.2007.01.009 · Zbl 1176.82012 · doi:10.1016/j.aop.2007.01.009
[18] DOI: 10.1103/PhysRevE.72.026113 · doi:10.1103/PhysRevE.72.026113
[19] DOI: 10.1142/S0219025706002354 · Zbl 1097.60087 · doi:10.1142/S0219025706002354
[20] DOI: 10.1142/S0219749906002389 · Zbl 1107.81015 · doi:10.1142/S0219749906002389
[21] DOI: 10.1103/PhysRevA.74.042334 · doi:10.1103/PhysRevA.74.042334
[22] DOI: 10.1103/PhysRevA.67.032304 · doi:10.1103/PhysRevA.67.032304
[23] DOI: 10.1103/PhysRevA.77.062302 · doi:10.1103/PhysRevA.77.062302
[24] DOI: 10.1103/PhysRevA.76.012332 · doi:10.1103/PhysRevA.76.012332
[25] Georgi H., Lie Algebras in Particle Physics (1999)
[26] Nielsen M. A., Quantum Computation and Quantum Information (2000) · Zbl 1049.81015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.