×

Smooth adaptive sliding mode observers in uncertain chaotic communication. (English) Zbl 1160.93339

Summary: We study the performance of Adaptive Sliding Mode Observers (ASMO) in chaotic synchronization and communication in the presence of uncertainties. The proposed robust adaptive observer-based synchronization is used for cryptography based on Nonlinear Chaotic Masking modulation (NCM). Uncertainties are intentionally injected into the chaotic dynamical system to achieve higher security and we use robust sliding mode observer design methods for the uncertain non-linear dynamics. In addition, a relaxed matching condition and a boundary layer smooth gain are introduced to realize the robust observer design more feasibly. A brief study in introducing an alternative augmented ASMO-based chaotic communication configuration will be discussed. Finally, a Lorenz system is employed as an illustrative example to demonstrate the effectiveness and feasibility of the proposed cryptosystem.

MSC:

93B51 Design techniques (robust design, computer-aided design, etc.)
93C10 Nonlinear systems in control theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93B07 Observability
94A05 Communication theory
93B12 Variable structure systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1080/00207178308933084 · Zbl 0521.93012 · doi:10.1080/00207178308933084
[2] DOI: 10.1109/CCA.2002.1040164 · doi:10.1109/CCA.2002.1040164
[3] Alvarez G, Int. J. Bifurc. Chaos pp 332– (1999)
[4] DOI: 10.1109/TAC.1986.1104100 · Zbl 0582.93031 · doi:10.1109/TAC.1986.1104100
[5] DOI: 10.1049/ip-cta:20041123 · doi:10.1049/ip-cta:20041123
[6] DOI: 10.1103/PhysRevLett.71.65 · doi:10.1103/PhysRevLett.71.65
[7] DOI: 10.1109/81.633874 · doi:10.1109/81.633874
[8] DOI: 10.1103/PhysRevLett.70.3031 · doi:10.1103/PhysRevLett.70.3031
[9] DOI: 10.1016/S0165-1684(00)00038-4 · Zbl 1035.94500 · doi:10.1016/S0165-1684(00)00038-4
[10] DOI: 10.1142/S0218127492000823 · Zbl 0875.94134 · doi:10.1142/S0218127492000823
[11] DOI: 10.1109/81.735435 · Zbl 0991.93097 · doi:10.1109/81.735435
[12] DOI: 10.1080/00207170310001643249 · Zbl 1049.93013 · doi:10.1080/00207170310001643249
[13] DOI: 10.1137/0323016 · Zbl 0569.93035 · doi:10.1137/0323016
[14] DOI: 10.1109/81.788817 · Zbl 0963.94003 · doi:10.1109/81.788817
[15] Murali K, Phys. Rev. Lett. 63 pp 16217– (2001)
[16] DOI: 10.1103/PhysRevE.48.R1624 · doi:10.1103/PhysRevE.48.R1624
[17] DOI: 10.1109/81.633877 · doi:10.1109/81.633877
[18] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[19] Raoufi, R and Khaloozadeh, H. 11–14 December 2004. ”A modified robust adaptive chaos synchronization”. InInternational Conference on Signal Processing & Communication, 11–14 December, 76–80. Bangalore: SPCOM.
[20] Rubezic V, Proc. ICECS’99 1 pp 153– (1999)
[21] DOI: 10.1109/81.633887 · doi:10.1109/81.633887
[22] DOI: 10.1080/00207178708933870 · Zbl 0627.93012 · doi:10.1080/00207178708933870
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.