×

Analysis of the van der Pol oscillator containing derivatives of fractional order. (English) Zbl 1158.70009

Summary: We propose a modified version of the classical van der Pol oscillator, introducing fractional-order time derivatives into the state-space model. The resulting fractional-order van der Pol oscillator is analyzed in time and frequency domains, using phase portraits, spectral analysis and bifurcation diagrams. The fractional-order dynamics is illustrated through numerical simulations of the proposed schemes using approximations to fractional-order operators. Finally, the analysis is extended to the forced van der Pol oscillator.

MSC:

70K05 Phase plane analysis, limit cycles for nonlinear problems in mechanics
70K50 Bifurcations and instability for nonlinear problems in mechanics
70K40 Forced motions for nonlinear problems in mechanics
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Ahmad, W.M., Chaos, Solitons & Fractals 16 (2) pp 339– (2003) · Zbl 1033.37019 · doi:10.1016/S0960-0779(02)00438-1
[2] Arena, P., Nonlinear Noninteger Order Circuits and Systems-An Introduction (2000) · Zbl 0966.93006 · doi:10.1142/4507
[3] Barbosa, R.S., Proceedings of the IEEE International Conference on Computational Cybernetics(ICCC’04)
[4] Charef, A., IEEE Transactions on Automatic Control 37 (9) pp 1465– (1992) · Zbl 0825.58027 · doi:10.1109/9.159595
[5] Hartley, T.T., Theory and Applications 42 (8) pp 485– (1995)
[6] Hilfer, R., Application of Fractional Calculus in Physics (2000) · Zbl 1046.82009 · doi:10.1142/3779
[7] Hwang, C., IEEE Transactions on Automatic Control 47 (4) pp 625– (2002) · Zbl 1364.93772 · doi:10.1109/9.995039
[8] Machado, J.A.T., Fractional Calculus & Applied Analysis 4 (1) pp 47– (2001)
[9] Mahmoud, G.M., Chaos, Solitons & Fractals 21 pp 915– (2004) · Zbl 1046.70014 · doi:10.1016/j.chaos.2003.12.039
[10] Mickens, R.E., Journal of Sound and Vibration 255 (4) pp 789– (2002) · Zbl 1237.34065 · doi:10.1006/jsvi.2001.4172
[11] Mickens, R.E., Journal of Sound and Vibration 259 (2) pp 457– (2003) · Zbl 1237.34066 · doi:10.1006/jsvi.2002.5170
[12] Oldham, K.B., The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (1974) · Zbl 0292.26011
[13] Oustaloup, A., La Dérivation Non Entière: Théorie, Synthèse et Applications (1995)
[14] Pereira, E., Proceedings of the First IFAC Workshop on Fractional Differentiation and Its Applications (FDA’04)
[15] Podlubny, I., Fractional Differential Equations (1999) · Zbl 0924.34008
[16] Vinagre, B.M., Fractional Calculus & Applied Analysis 3 (3) pp 231– (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.