×

On multiplicity and stability of positive solutions of a diffusive prey-predator model. (English) Zbl 1148.35317

The paper deals with the existence, stability and number of positive solutions of the following prey-predator system with diffusion: \[ \left\{{\begin{aligned} &-\Delta u=u\left( a-u-\dfrac{v}{1+mu}\right)\quad \text{ in }\Omega,\\ &-\Delta v=v\left( b-\dfrac{mv}{m+u}\right)\quad \text{ in }\Omega,\\ &u=0\quad \text{ on }\partial\Omega,\\ &v=0\quad \text{ on }\partial\Omega.\\ \end{aligned}}\right.\tag{1} \] Here \(a,b,m>0\) are constants and \(m\) is large.
Denote by \(\lambda_{1},\lambda_{2}\) the first and the second eigenvalue of \(-\Delta\) in \(\Omega\), subject to the homogeneous Dirichlet boundary condition. The main result of the paper is:
Theorem A. Let \(b>\lambda_{1}\) and \(\Omega\) be fixed. Then there exists a large \(M\), depending only on \(b\) and \(\Omega\), such that for each \(m\geq M\), there is a unique constant \(\widetilde{a}\in(\lambda_{1},b)\) with \(\widetilde{a}\rightarrow\lambda_{1}\) as \(m\rightarrow \infty\) and
(i) (1) has a positive solution if and only if \(a\geq\widetilde{a}\);
(ii) (1) has a unique positive solution if \(a=\widetilde{a}\) or \(a\in(b,\infty)\). Moreover, the unique positive solution is asymptotically stable if \(a\in(b,\infty)\);
(iii) (1) has at least two positive solutions if \(a\in(\widetilde{a},b)\). Furthermore, when \(b<\lambda_{2}\), (1) has exactly two positive solutions, one of which is asymptotically stable and the other is unstable.

MSC:

35J55 Systems of elliptic equations, boundary value problems (MSC2000)
35J60 Nonlinear elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, 620-709 (1976) · Zbl 0345.47044
[2] Aziz-Alaoui, M. A.; Daher Okiye, M., Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett., 16, 1069-1075 (2003) · Zbl 1063.34044
[3] Blat, J.; Brown, K. J., Global bifurcation on positive solutions in some systems of elliptic equations, SIAM J. Math. Anal., 17, 1339-1353 (1986) · Zbl 0613.35008
[4] Crandall, M. G.; Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340 (1971) · Zbl 0219.46015
[5] Dancer, E. N., On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91, 131-151 (1983) · Zbl 0512.47045
[6] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840 (1981), Springer-Verlag · Zbl 0456.35001
[7] Du, Y. H.; Hsu, S. B., A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203, 331-364 (2004) · Zbl 1330.35467
[8] Du, Y. H.; Lou, Y., Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc., 349, 2442-2475 (1997) · Zbl 0965.35041
[9] Y.H. Du, M.X. Wang, Asymptotic behaviour of positive steady-states to a predator-prey model, preprint; Y.H. Du, M.X. Wang, Asymptotic behaviour of positive steady-states to a predator-prey model, preprint · Zbl 1293.35102
[10] Gui, C. F.; Lou, Y., Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model, Comm. Pure Appl. Math., XLVII, 1571-1594 (1994) · Zbl 0829.92015
[11] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer-Verlag · Zbl 0691.35001
[12] Kato, K., Perturbation Theory for Linear Operator (1966), Springer-Verlag: Springer-Verlag New York
[13] Murray, J. D., Mathematical Biology (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0779.92001
[14] Nakashima, K.; Yamada, Y., Positive steady states for prey-predator models with cross-diffusion, Adv. Differential Equations, 6, 1099-1122 (1996) · Zbl 0863.35034
[15] Rabinowitz, P. H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7, 487-513 (1971) · Zbl 0212.16504
[16] Peng, R.; Wang, M. X., Positive steady-states of the Holling-Tanner prey-predator model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 135, 149-164 (2005) · Zbl 1144.35409
[17] R. Peng, M.X. Wang, Qualitative analysis of the Holling-Tanner prey-predator model with diffusion and cross-diffusion, preprint; R. Peng, M.X. Wang, Qualitative analysis of the Holling-Tanner prey-predator model with diffusion and cross-diffusion, preprint
[18] Ye, Q. X.; Li, Z. Y., Introduction to Reaction-Diffusion Equations (1990), Science Press: Science Press Beijing, (in Chinese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.