×

Detrended fluctuation analysis of short datasets: An application to fetal cardiac data. (English) Zbl 1106.62120

Summary: Using detrended fluctuation analysis (DFA) we perform scaling analysis of short datasets of length 500–1500 data points. We quantify the long range correlation (exponent \(\alpha)\) by computing the mean value of the local exponents \(\alpha_L\) (in the asymptotic regime). The local exponents are obtained as the (numerical) derivative of the logarithm of the fluctuation function \(F(s)\) with respect to the logarithm of the scale factor \(s:\alpha_L=d\log_{10}F(s)/d \log_{10}s\). These local exponents display huge variations and complicate the correct quantification of the underlying correlations. We propose the use of the phase randomized surrogate (PRS), which preserves the long range correlations of the original data, to minimize the variations in the local exponents. Using the numerically generated uncorrelated and long range correlated data we show that performing DFA on several realizations of PRS and estimating \(\alpha_L\) from the averaged fluctuation functions (of all realizations) can minimize the variations in \(\alpha_L\). The application of this approach to the fetal cardiac data (RR intervals) is discussed and we show that there is a statistically significant correlation between \(\alpha\) and the gestation age.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62-07 Data analysis (statistics) (MSC2010)
62M99 Inference from stochastic processes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Peng, C.-K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simon, M.; Stanley, H. E., Long-range correlations in nucleotide sequences, Nature, 356, 168-170 (1992)
[2] Peng, C.-K.; Havlin, S.; Stanley, H. E.; Goldberger, A. L., Quantification of scaling exponents and cross over phenomena in nonstationary heartbeat time series, Chaos, 5, 82-87 (1995)
[3] Thurner, S.; Feurstein, M. C.; Teich, M. C., Multiresolution wavelet analysis of heartbeat intervals discriminates healthy and patients from those with cardiac pathology, Phys. Rev. Lett., 80, 1544-1547 (1998)
[4] Thurner, S.; Feurstein, M. C.; Lowen, S. B.; Teich, M. C., Receiver-operating-Characteristic analysis reveals superiority of scale-dependent wavelet and spectral measures for assessing cardiac dysfunction, Phys. Rev. Lett., 81, 5688-5691 (1998)
[5] Kantz, H.; Schreiber, T., (Chirkov, B.; Cvitanovic, P.; Moss, F.; Swinney, H., Nonlinear Time Series Analysis (2002), Cambridge University Press: Cambridge University Press IK)
[6] Sapir, N.; Karasik, R.; Havlin, S.; Simon, E.; Hausdorff, J. M., Detecting scaling in the period dynamics of multimodal signals: Application to Parkinson tremor, Phys. Rev. E, 67, 031903 (2003)
[7] Maraun, D.; Rust, H.; Timmer, J., Tempting long-memory — on the interpretation of DFA results, Nonlinear Process. Geophys., 11, 495-503 (2004)
[8] Echeverría, J. C.; Woolfson, M. S.; Crowe, J. A.; Hayes-Gill, B. R.; Croaker, G. D.H.; Vyas, H., Interpretation of heart rate variability via detrended fluctuation analysis and \(\alpha \beta\) filter, Chaos, 13, 467-475 (2003)
[9] Evheverría, J. C.; Hayes-Gill, B. R.; Crowe, J. A.; Woolfson, M. S.; Croaker, G. D.H., Detrended fluctuation analysis: A suitable method for studying fetal heart rate variability?, Physiol. Meas., 25, 763-774 (2004)
[10] Echeverría, J. C.; Woolfson, M. S.; Crowe, J. A.; Hayes-Gill, B. R.; Piéri, J. F.; Spencer, C. J.; James, D. K., Does fractality in heart rate variability indicate the development of fetal neural processes?, Phys. Lett. A, 331, 225-230 (2004) · Zbl 1123.92304
[11] Bunde, A.; Havlin, S.; Kantelhardt, J. W.; Penzel, T.; Peter, J.-H.; Voigt, K., Correlated and uncorrelated regions in heart-rate fluctuations during sleep, Phys. Rev. Lett., 85, 3736-3739 (2000)
[12] Kantelhardt, J. W.; Ashkenazy, Y.; Ivanov, P. Ch.; Bunde, A.; Havlin, S.; Penzel, T.; Peter, J.-H.; Stanley, H. E., Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments, Phys. Rev. E., 65, 051908-1-6 (2002)
[13] Koscielny Bunde, E.; Bunde, A.; Havlin, S.; Roman, H. E.; Goldreich, Y.; Schellenhuber, H.-J., Indication of a universal persistence law governing atmospheric variability, Phys. Rev. Lett., 81, 729-732 (1998)
[15] Kantelhardt, J. W.; Koscielny-Bunde, E.; Rego, H. A.; Havlin, S.; Bunde, A., Detecting long-range correlations with detrended fluctuation analysis, Physica A, 295, 441-454 (2001) · Zbl 0978.37057
[16] Theiler, J.; Longtin, A.; Galdrikian, B.; Farmer, D. D., Testing for nonlinearity in time series: The method of surrogate data, Physica D, 58, 77-94 (1992) · Zbl 1194.37144
[17] Schreiber, T.; Schmitz, A., Improved surrogate data for nonlinearity tests, Phys. Rev. Lett., 77, 635-638 (1996)
[18] Schreiber, T.; Schmitz, A., Surrogate time series, Physica D, 142, 346-382 (2000) · Zbl 1098.62551
[19] Timmer, J.; König, M., On generating power law noise, Astron. Atrophys., 300, 707-710 (1995)
[20] Hu, K.; Ivanov, P. Ch.; Chen, Z.; Carpena, P.; Stanley, H. E., Effect of trends on detrended fluctuation analysis, Phys. Rev. E, 64, 011114 (2001)
[21] (Nijhuis, J. G., Fetal Behavior: Development and Perinatal Aspects (1992), Oxford University Press: Oxford University Press NY)
[22] Piéri, J. F.; Crowe, J. A.; Hayers-Gill, B. R.; Spencer, C. J.; Bhogal, K.; James, D. K., Compact long-term recorder for the transabdominal foetal and maternal electrocardiogram, Med. Biol. Eng. Comput., 39, 118-125 (2001)
[23] Eswaran, H.; Preißl, H.; Wilson, J. D.; Murphy, P.; Lowery, C. L., First magnetomyographic recording of the uterine activity with spatial-temporal resolution using 151 channel sensor array, Am. J. Obstet. Gynecol., 187, 145-151 (2002)
[24] J.D. Wilson, R.B. Govindan, J.Q. Campbell, J.O. Hatton, C.L. Lowery, H. Preißl, Integrated approach for fetal QRS detection (submitted for publication); J.D. Wilson, R.B. Govindan, J.Q. Campbell, J.O. Hatton, C.L. Lowery, H. Preißl, Integrated approach for fetal QRS detection (submitted for publication)
[25] Samonas, M.; Petrou, M.; Ioannides, A. A., Identification and elimination of cardiac contribution in single-trial magnetoencephalographic signals, IEEE Trans. Biomed. Eng., 44, 386-393 (1997)
[26] Vrba, J.; Robinson, S. E.; Mccubbin, J.; Lowery, C. L.; Eswaran, H.; Wilson, J. D.; Murphy, P.; Preißl, H., Fetal MEG redistribution by projection operators, IEEE Trans. Biomed. Eng., 51, 1207-1218 (2004)
[27] Nakamura, T.; Horio, H.; Miyashita, S.; Chiba, Y.; Sato, S., Identification of development and autonomic nerve activity from heart rate variability in preterm infants, Biosystems, 79, 117-124 (2005)
[28] Kantelhardt, J. W.; Penzel, T.; Rostig, S.; Becker, H. F.; Havlin, S.; Bunde, A., Breathing during REM and non-REM sleep: Correlated versus uncorrelated behaviour, Physica A, 319, 447-457 (2003)
[29] Mrzljak, L.; Uylings, H. B.M.; Kostovic, I.; van Eden, C. G., Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study, J. Comp. Neurol., 271, 355-386 (1988)
[30] Glover, V.; Fisk, N. M., Fetal pain: Implications for research and practice, Br. J. Obstet. Gynaecol., 106, 881-886 (1999)
[31] Eswaran, H.; Wilson, J. D.; Preissl, H.; Robinson, S. E.; Vrba, J.; Murphy, P.; Rose, D. F.; Lowery, C. L., Magnetoencephalographic recordings of visual evoked brain activity in the human fetus, Lancet, 360, 779-780 (2002)
[32] Ivanov, P. C.; Bunde, A.; Amaral, L. A.N.; Havlin, S.; Fritsch-Yelle, J.; Baevsky, R. M.; Stanley, H. E.; Goldberger, A. L., Sleep-wake differences in scaling behavior of human heartbeat: Analysis of terrestrial and long-term space flight data, Europhys. Lett., 48, 594-600 (1999)
[33] Torres, F.; Anderson, C., The normal EEG of the human newborn, J. Clin. Neurophysiol., 2, 89-103 (1985)
[34] Kikuchi, A.; Unno, N.; Horikoshi, T.; Shimizu, T.; Kozuma, S.; Taketani, Y., Changes in fractal features of fetal heart rate during pregnancy, Early Hum. Dev., 81, 655-661 (2005)
[35] Van Leeuwen, P.; Geue, D.; Lange, S.; Hatzmann, W.; Grönemeyer, D., Changes in the frequency power spectrum of fetal rate in the course of pregnancy, Prenat. Diagn., 23, 909-916 (2003)
[36] Yum, M. K.; Kim, J. H., A very-short-term intermittency of fetal heart rates and developmental milestone, Pediatr. Res., 53, 915-919 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.