×

Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue. (English) Zbl 1080.92010

Summary: A mathematical model describing the thermomechanical interactions in biological bodies at high temperature is proposed by treating the soft tissue in biological bodies as a thermoporoelastic medium. The heat transfer and elastic deformation in soft tissues are examined based on the H. H. Pennes [J. Appl. Physiol. 1, 93–122 (1948)] bioheat transfer equation and the modified Duhamel-Neuman equations. The three-dimensional governing equations based on the proposed model are discretized using a 19-point finite-difference scheme. The resulting large sparse linear system is solved by a preconditioned Krylov subspace method. Numerical simulations show that the proposed model is valid under our test conditions and the proposed numerical techniques are efficient.

MSC:

92C05 Biophysics
80A20 Heat and mass transfer, heat flow (MSC2010)
65N06 Finite difference methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fung, Y. C., Biomechanics: Mechanical Properties of Living Tissues (1981), Springer-Verlag: Springer-Verlag Paris
[2] Pennes, H. H., Analysis of tissue and arterial blood temperatures in resting human forearm, J. Appl. Physiol., 1, 93-122 (1948)
[3] Weinbaum, S.; Jiji, L. M.; Lemons, D. E., Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer—Part I: Anatomical foundation and model conceptualization, ASME J. Biomech. Eng., 106, 321-330 (1984)
[4] Jiji, L. M.; Weinbaum, S.; Lemons, D. E., Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer—Part II: Model formulation and solution, ASME J. Biomech. Eng., 106, 331-341 (1984)
[5] Chen, M. M.; Holmes, K. R., Microvascular contributions in tissue heat transfer, (Thermal Characteristics of Tumors: Applications in Detection and Treatment, Annals. Thermal Characteristics of Tumors: Applications in Detection and Treatment, Annals, New York Academy of Sciences, Volume 335 (1980), Academy of Sciences: Academy of Sciences New York), 137-150
[6] Arora, D.; Skliar, M.; Roemer, R. B., Model-predictive control of hyperthermia treatments, IEEE Trans. Biomed. Eng., 49, 629-639 (2002)
[7] Lee, J. W.; Kim, K. S.; Lee, S. M.; Eom, S. J.; Troitsky, R. V., A novel design of thermal anomaly for mammary gland tumor phantom for microwave radiometer, IEEE Trans. Biomed. Eng., 49, 694-699 (2002)
[8] Kowalski, M. E.; Jin, J. M., Model-order reduction of nonlinear models of electromagnetic phased-array hyperthermia, IEEE Trans. Biomed. Eng., 50, 1243-1254 (2003)
[9] Tungjitkusolmun, S.; Staelin, S. T.; Haemmerich, D.; Tsai, J. Z.; Gao, H.; Webster, J. G.; Lee, F. T.; Mahvi, D. M.; Vorperian, V. R., Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation, IEEE Trans. Biomed. Eng., 49, 3-9 (2002)
[10] Durkee, J. W.; Antich, P. P., Exact solutions to the multi-region time-dependent bioheat equation with transient heat sources and boundary conditions, Phys. Med. Biol., 36, 345-368 (1991)
[11] Kowalski, S. J., Thermomechanics of the drying process of fluid-saturated porous media, Drying Technology, 12, 453-482 (1994)
[12] Cleary, M. P., Fundamental solutions for a fluid-satured porous solid, Int. J. Solids Structures, 13, 785-806 (1977) · Zbl 0367.73088
[13] Skempton, A. N., The pore pressure coefficients A and B, Geotechnique, 4, 143-147 (1954)
[14] Fung, Y. C., Foundations of Solid Mechanics (1965), Prentice-Hall
[15] Henriques, F. C.; Moritz, A. R., Studies of thermal injury, I: The conduction of heat to and through skin and the temperatures attained therein, a theoretical and experimental investigation, Amer. J. Pathol., 23, 531-549 (1947)
[16] Saif, M. T.A.; Alaca, B. E.; Sehitoglu, H., Analytical modeling of electrostatic membrane actuator for micro pumps, IEEE Journal of Microelectromechanical System, 8 (1999)
[17] Karaa, S.; Zhang, J.; Yang, F., A numerical study of a 3D bioheat transfer problem with different spatial heating, Math. Comput. Simul., 20, 375-388 (2005) · Zbl 1062.92018
[18] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[19] Saad, Y., Iterative Methods for Sparse Linear Systems (1996), PWS Pub.: PWS Pub. New Jersey · Zbl 1002.65042
[20] Lee, J.; Zhang, J.; Lu, C. C., Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems, J. Comput. Phy., 185, 158-175 (2003) · Zbl 1017.65027
[21] Kang, N.; Zhang, J.; Carlson, E. S., Performance of ILU preconditioning techniques in simulating anisotropic diffusion in the human brain, Future Generat. Comput. Sys., 20, 687-698 (2004)
[22] Liu, J.; Xu, L. X., Estimation of blood perfusion using phase shift in temperature response to the sinusoidal heating at the skin surface, IEEE Trans. Biomed. Eng., 46, 1037-1043 (2001)
[23] Deng, Z. S.; Liu, J., Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies, ASME J. Biomech. Eng., 124, 638-649 (2002)
[24] Tharp, H. S.; Roemer, R. B., Optimal power deposition with finite-sized, planar hyperthermia applicator arrays, IEEE Trans. Biomed. Eng., 39, 569-579 (1992)
[25] Roemer, R. B., Engineering aspects of hyperthermia therapy, (Yarmush, M. L.; Killer, K. R.; Toner, M., Annual Review of Biomedical Engineering (1999), Annual Reviews: Annual Reviews New York), 347-376
[26] Price, D. M., Modulated-temperature thermomechanical analysis, J. Therm. Anal., 51, 231-236 (1998)
[27] Patera, A. T.; Mikic, B. B.; Eden, G.; Bowman, H. F., (Winter Annual Meeting of ASME, Advances in Bioengineering (1979)), 187-191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.