×

Fractional relaxation-oscillation and fractional diffusion-wave phenomena. (English) Zbl 1080.26505

Summary: The processes involving the basic phenomena of relaxation, diffusion, oscillations and wave propagation are of great relevance in physics; from a mathematical point of view they are known to be governed by simple differential equations of order 1 and 2 in time. The introduction of fractional derivatives of order \(a\) in time, with \(0 < a < 1\) or \(1 < a < 2\), leads to processes that, in mathematical physics, we may refer to as fractional phenomena. The objective of this paper is to provide a general description of such phenomena adopting a mathematical approach to the fractional calculus that is as simple as possible. The analysis carried out by the Laplace transform leads to certain special functions in one variable, which generalize in a straightforward way the characteristic functions of the basic phenomena, namely the exponential and the Gaussian.

MSC:

26A33 Fractional derivatives and integrals

Software:

CRONE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Oldham, K. B.; Spanier, J., (The Fractional Calculus (1974), Academic Press: Academic Press New York) · Zbl 0428.26004
[2] (Ross, B., Proc. Int. Conf.. Proc. Int. Conf., Univ. of New Haven, USA (1974))
[3] McBride, A. C., Fractional Calculus and Integral Transforms of Generalized Functions, (Pitman Research Notes in Mathematics #31 (1979), Pitman: Pitman London) · Zbl 0423.46029
[4] (McBride, A. C.; Roach, G. F., Proc. Int. Workshop. Proc. Int. Workshop, Univ. of Strathclyde, UK (1984))
[5] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., (Integrals and Derivatives of Fractional Order and Some of Their Applications (1987), Gordon and Breach: Gordon and Breach Minsk), Engl. Transl. from Russian · Zbl 0818.26003
[6] (Nishimoto, K., Proc. Int. Conf.. Proc. Int. Conf., Nihon Univ., Tokyo, Japan (1989))
[7] Nishimoto, K., (An Essence of Nishimoto’s Fractional Calculus (1991), Descartes Press: Descartes Press Koriyama) · Zbl 0798.26007
[8] (Kalia, R. N., Recent Advances in Fractional Calculus (1993), Global, Sauk Rapids: Global, Sauk Rapids Minnesota) · Zbl 0782.00074
[9] Miller, K. S.; Ross, B., (An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), Wiley: Wiley New York) · Zbl 0789.26002
[10] Kiryakova, V., Generalized Fractional Calculus and Applications, (Pitman Research Notes in Mathematics #301 (1994), Longman: Longman Harlow) · Zbl 1189.33034
[11] Caputo, M., (Elasticità e Dissipazione (1969), Zanichelli: Zanichelli Bologna), (in Italian)
[12] Babenko, Yu. I., (Heat and Mass Transfer (1986), Chimia: Chimia Leningrad), (in Russian)
[13] Davis, H. T., (The Theory of Linear Operators (1936), The Principia Press: The Principia Press Bloomington, Indiana) · JFM 62.0457.02
[14] (Erdélyi, A., Tables of Integral Transforms, Vol. 2 (1954), McGraw-Hill: McGraw-Hill New York), Chap. 13 · Zbl 0055.36401
[15] Gorenflo, R.; Vessella, S., Abel Integral Equations: Analysis and Applications, (Lecture Notes in Mathematics #1461 (1991), Springer: Springer Berlin) · Zbl 0717.45002
[16] (Srivastava, H. M.; Owa, S., Univalent Functions, Fractional Calculus, and their Applications (1989), Ellis Horwood: Ellis Horwood Chichester) · Zbl 0683.00012
[17] (Rusev, P.; Dimovski, I.; Kiryakova, V., Proc. Int. Workshop. Proc. Int. Workshop, Sofia, Bulgaria (12-17 August 1994))
[18] Mainardi, F., Appl. Mech. Rev., 46, 549 (1993), Abstract in · Zbl 0879.35036
[19] Mainardi, F., Fractional relaxation in anelastic solids, J. Alloys Compds, 211/212, 534-538 (1994)
[20] Mainardi, F., (Proc. VII-th WASCOM. Proc. VII-th WASCOM, Bologna, Italy (4-7 October 1993)) · Zbl 0948.60006
[21] Mainardi, F., Fractional relaxation and fractional diffusion equations, (Ames, W. F., Proc. 12-th IMACS World Congress, Vol. 1 (1994), GeorgiaTech: GeorgiaTech Atlanta), 329-332
[22] Mainardi, F.; Tomirotti, M., On a special function arising in the time fractional diffusionwave equation, (Proc. Int. Workshop. Proc. Int. Workshop, Sofia, Bulgaria (1995)), 171-183 · Zbl 0921.33010
[23] Podlubny, I., The Laplace transform method for linear differential equations of fractional order, (Preprint UEF-02-94 (1994), Inst. Exp. Phys., Slovak Acad. Sci: Inst. Exp. Phys., Slovak Acad. Sci Kosice) · Zbl 0893.65051
[24] Podlubny, I., Solutions of linear fractional differential equations, (Proc. Int. Workshop. Proc. Int. Workshop, Sofia, Bulgaria (1995)), 227-237 · Zbl 0918.34010
[25] Gorenflo, R.; Rutman, R., On ultraslow and on intermediate processes, (Proc. Int. Workshop. Proc. Int. Workshop, Sofia, Bulgaria (1995)), 61-81 · Zbl 0923.34005
[26] Gel’fand, I. M.; Shilov, G. E., (Generalized Functions, Vol. 1 (1964), Academic Press: Academic Press New York) · Zbl 0115.33101
[27] Doetsch, G., (Introduction to the Theory and Application of the Laplace Transformation (1974), Springer: Springer Berlin) · Zbl 0278.44001
[28] Caputo, M., Vibrations of an infinite viscoelastic layer with a dissipative memory, J. Acoust. Soc. Am., 56, 897-904 (1974) · Zbl 0285.73031
[29] (Erdélyi, A., Higher Transcendental Functions, Vol. 3 (1955), McGraw-Hill: McGraw-Hill New York), Chap. 18 · Zbl 0064.06302
[30] Gross, B., On creep and relaxation, J. Appl. Phys., 18, 212-221 (1947)
[31] Caputo, M.; Mainardi, F., A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91, 134-147 (1971)
[32] Caputo, M.; Mainardi, F., Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. II), 1, 161-198 (1971)
[33] Nigmatullin, R. R., On the theory of relaxation with “remnant” memory, Phys. Stat. Sol. B, 124, 389-393 (1984), (English transl. from Russian)
[34] Torvik, P. J.; Bagley, R. L., On the appearance of the fractional derivatives in the behavior of real materials, J. Appl. Mech. (Trans. ASME), 51, 294-298 (1984) · Zbl 1203.74022
[35] Koeller, R. C., Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. (Trans. ASME), 51, 299-307 (1984) · Zbl 0544.73052
[36] Mainardi, F.; Bonetti, E., The application of real-order derivatives in linear viscoelasticity, Rheol. Acta, 26, 64-67 (1988), Suppl.
[37] Nonnenmacher, T. F.; Glöckle, W. G., A fractional model for mechanical stress relaxation, Phil. Mag. Letters, 64, 2, 89-93 (1991)
[38] Nigmatullin, R. R., The physics of fractional calculus and its realization on the fractal structures, (Doctorate Thesis (1992), Kazan University), (in Russian) · Zbl 0795.26007
[39] Stanković, B., On the function of E. M. Wright, Publ. Inst. Math. Beograd (Nouv. serie), 10, 24, 113-124 (1970) · Zbl 0204.08404
[40] Gajić, Lj.; Stanković, B., Some properties of Wright’s function, Publ. Inst. Math. Beograd (Nouv. serie), 20, 34, 91-98 (1976) · Zbl 0343.33011
[41] Mikusiński, J., On the function whose Laplace transform is exp(−\(s^αλ)\), Studia Math., 18, 191-198 (1959) · Zbl 0087.10501
[42] Buchen, P. W.; Mainardi, F., Asymptotic expansions for transient viscoelastic waves, J. Mécaniq., 14, 597-608 (1975) · Zbl 0351.73033
[43] Bender, C. M.; Orszag, S. A., (Advanced Mathematical Methods for Scientists and Engineers (1987), McGraw-Hill: McGraw-Hill Singapore), Chap. 3
[44] Wyss, W., Fractional diffusion equation, J. Math. Phys., 27, 2782-2785 (1986) · Zbl 0632.35031
[45] Schneider, W. R.; Wyss, W., Fractional diffusion and wave equations, J. Math. Phys., 30, 134-144 (1989) · Zbl 0692.45004
[46] Kochubei, A. N., A Cauchy problem for evolution equations of fractional order, J. Diff. Eqns, 25, 967-974 (1989), (English transl. from Russian) · Zbl 0696.34047
[47] Kochubei, A. N., Fractional order diffusion, J. Diff. Eqns, 26, 485-492 (1990), (English transl. from Russian) · Zbl 0729.35064
[48] Mainardi, F.; Buggisch, H., (Proc. IUTAM Symposium. Proc. IUTAM Symposium, Tallinn, Estonia (22-28 August 1982)) · Zbl 0505.76140
[49] Nigmatullin, R. R., The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. B, 133, 425-430 (1986), (English transl. from Russian)
[50] Young, W. R.; Pumir, A.; Pomeau, Y., Anomalous diffusion of tracer in convection rolls, Phys. Fluids A, 1, 462-469 (1989) · Zbl 0659.76097
[51] Choi, U. J.; MacCamy, R. C., Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Applics, 139, 448-464 (1989) · Zbl 0674.45007
[52] LeMéhauté, A., (Les Géometries Fractáles (1990), Hermes: Hermes Paris)
[53] Oustaloup, A., (La Commande CRONE (1990), Hermes: Hermes Paris)
[54] Nonnenmacher, T. F., Fractional integral and differential equations for a class of Levy-type probability densities, J. Phys A: Math. Gen., 23, L697-L700 (1990)
[55] Sugimoto, N., Burgers equation with a fractional derivative; hereditary effects of nonlinear acoustic waves, J. Fluid Mech., 225, 631-653 (1991) · Zbl 0721.76011
[56] Giona, M.; Roman, H. E., Fractional diffusion equation for transport phenomena in random media, Physica A, 185, 82-97 (1992)
[57] Lenormand, R., Use of fractional derivatives for fluid flow in heterogeneous media, (Paper presented at the 3rd European Conf. on the Mathematics of Oil Recovery. Paper presented at the 3rd European Conf. on the Mathematics of Oil Recovery, 17-19 June 1992, Delft, The Netherlands (1992)) · Zbl 0738.76074
[58] Ochmann, M.; Makarov, S., Representation of the absorption of nonlinear waves by fractional derivatives, J. Acoust. Soc. Am., 94, 3392-3399 (1993)
[59] Caputo, M., The splitting of the seismic rays due to dispersion in the Earth’s interior, Rend. Fis. Acc. Lincei (Ser. IX), 4, 279-286 (1993)
[60] Zaslavasky, G. M., Fractional kinetic equation for Hamiltonian chaos, Physica D, 76, 110-122 (1994) · Zbl 1194.37163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.