×

Microlensing signature of a white dwarf population in the galactic halo. (English) Zbl 1064.85018

Summary: Microlensing and pixel-lensing surveys play a fundamental role in the searches for galactic dark matter and in the study of the galactic structure. Recent observations suggest the presence of a population of old white dwarfs with high proper motion, probably in the galactic halo, with local mass density in the range \(1.3\times 10^{-4}- 4.4\times10^{-3} M_\odot pc^{-3}\), in addition to the standard galactic stellar disk and dark halo components. Investigation of the signatures on microlensing results towards the LMC of these different lens populations, with particular emphasis to white dwarfs, is the main purpose of the present paper. This is done by evaluating optical depth and microlensing rate of the various lens populations and then calculating through a Monte Carlo program, the probability that a lens which has caused a microlensing event of duration \(t_E\) belongs to a certain galactic population. Data obtained by the MACHO Collaboration allow us to set an upper bound of \(1.6\times 10^{-3} M_\odot pc^{-3}\) to the local mass density of white dwarfs distributed in spheroidal models, while for white dwarfs in disk models all values for the local mass density are in agreement with observational results.

MSC:

85A40 Astrophysical cosmology
83C10 Equations of motion in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1038/370275a0 · doi:10.1038/370275a0
[2] DOI: 10.1086/311746 · doi:10.1086/311746
[3] Salati P., Astron. Astrophys. 350 pp L57–
[4] DOI: 10.1086/308834 · doi:10.1086/308834
[5] DOI: 10.1086/309512 · doi:10.1086/309512
[6] DOI: 10.1051/0004-6361:20021027 · doi:10.1051/0004-6361:20021027
[7] DOI: 10.1086/304140 · doi:10.1086/304140
[8] DOI: 10.1046/j.1365-8711.1999.02863.x · doi:10.1046/j.1365-8711.1999.02863.x
[9] DOI: 10.1111/j.1365-8711.1998.01235.x · doi:10.1111/j.1365-8711.1998.01235.x
[10] DOI: 10.1086/309474 · doi:10.1086/309474
[11] DOI: 10.1086/307476 · doi:10.1086/307476
[12] DOI: 10.1086/171501 · doi:10.1086/171501
[13] DOI: 10.1086/311280 · doi:10.1086/311280
[14] DOI: 10.1086/311523 · doi:10.1086/311523
[15] Bennett D. P., American Astronomical Society, 195th AAS Meeting 31 pp 1422–
[16] Quinn J. L., American Astronomical Society Meeting 195 pp 3708–
[17] DOI: 10.1038/29710 · doi:10.1038/29710
[18] DOI: 10.1086/323495 · doi:10.1086/323495
[19] DOI: 10.1086/312310 · doi:10.1086/312310
[20] DOI: 10.1086/339842 · doi:10.1086/339842
[21] DOI: 10.1086/160719 · doi:10.1086/160719
[22] DOI: 10.1126/science.1059954 · doi:10.1126/science.1059954
[23] DOI: 10.1086/305474 · doi:10.1086/305474
[24] DOI: 10.1086/306023 · doi:10.1086/306023
[25] DOI: 10.1086/322362 · doi:10.1086/322362
[26] DOI: 10.1086/117655 · doi:10.1086/117655
[27] DOI: 10.1046/j.1365-8711.2002.05433.x · doi:10.1046/j.1365-8711.2002.05433.x
[28] DOI: 10.1086/367618 · doi:10.1086/367618
[29] DOI: 10.1086/175734 · doi:10.1086/175734
[30] DOI: 10.1146/annurev.aa.27.090189.003011 · doi:10.1146/annurev.aa.27.090189.003011
[31] DOI: 10.1086/164140 · doi:10.1086/164140
[32] DOI: 10.1086/169575 · doi:10.1086/169575
[33] DOI: 10.1086/322529 · doi:10.1086/322529
[34] DOI: 10.1086/303670 · doi:10.1086/303670
[35] DOI: 10.1086/308200 · doi:10.1086/308200
[36] DOI: 10.1086/320582 · doi:10.1086/320582
[37] DOI: 10.1051/0004-6361:20011590 · doi:10.1051/0004-6361:20011590
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.