×

Existence of positive periodic solution of periodic time-dependent predator-prey system with impulsive effects. (English) Zbl 1058.34051

The following impulsive problem is considered
\[ \begin{aligned} \dot{N}_1& =N_1(b_1-c_{11}N_1-c_{12}N_2), \\ \dot{N}_2& =N_2(-b_2+c_{21}N_1-c_{22}N_2), \\ \Delta N_1& =c_kN_1,\quad \Delta N_2=d_kN_2,\quad t=\tau_k, \end{aligned} \]
where \(b_i(t), c_{ij}(t)\) are continuous, \(T\)-periodic positive functions,
\[ c_{k+q}=c_k,~d_{k+q}=d_k,~\tau_{k+q}=\tau_k+T, 1+c_k>0,~1+d_k>0. \]
Under some additional assumptions, using bifurcation theory, the authors prove the existence of a positive periodic solution for this system and discuss some biological applications.

MSC:

34C25 Periodic solutions to ordinary differential equations
34A37 Ordinary differential equations with impulses
92D25 Population dynamics (general)
34C23 Bifurcation theory for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amine, Z., Ortega, R.: A periodic prey-predator system. J. Math. Anal. Appl., 185, 477–489 (1994) · Zbl 0808.34043 · doi:10.1006/jmaa.1994.1262
[2] López-Gómez, J., Ortega, R., Tineo, A.: The periodic predator-prey Lotka–Volterra model. Advances in Differential Equations, 1(3), 403–423 (1996) · Zbl 0849.34026
[3] Rabinowitz, P. H.: Some global results for nonlinear eigenvalue problems. J. Functional Analysis, 7, 487–513 (1971) · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
[4] Crandall, M. G., Rabinowitz, P. H.: Bifurcation from simple eigenvalues. J. Funct. Anal., 8, 321–340 (1971) · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[5] Crandall, M. G., Rabinowitz, P. H.: Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Rat. Mech. Anal., 52, 161–180 (1973) · Zbl 0275.47044 · doi:10.1007/BF00282325
[6] Bainov, D., Simeonov, P.: Impulsive differential equations: Periodic solution and applications. Longman, England, (1993) · Zbl 0815.34001
[7] Shulgin, B., Stone, L. et al.: Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol., 60, 1–26 (1998) · Zbl 0941.92026 · doi:10.1016/S0092-8240(98)90005-2
[8] Lakmeche, A., Arino, O.: Bifurcation of nontrivial periodic solution of impulsive differential equations arising chemotherapeutic treatment. Dynamics of Continuous, Discrete and Impulsive System, 7, 265–287 (2000) · Zbl 1011.34031
[9] Liu, X.: Impulsive stabilization and applications to population growth models. J. Math., 25(1), 381–395 (1995) · Zbl 0832.34039
[10] Liu, X., Zhang, S.: A cell population model described by impulsive PDEs-existence and numerical approximation. Comput. Math. Appl., 36(8), 1–11 (1998) · Zbl 0962.35181 · doi:10.1016/S0898-1221(98)00178-3
[11] Liu, X., Rohof, K.: Impulsive control of a Lotka–Volterra system. IMA Journal of Mathematical Control & Information, 15, 269–284 (1998) · Zbl 0949.93069 · doi:10.1093/imamci/15.3.269
[12] Funasaki, E., Kot, M.: Invasion and chaos in a periodically pulsed Mass-Action Chemostat. Theoretical Population Biology, 44, 203–224 (1993) · Zbl 0782.92020 · doi:10.1006/tpbi.1993.1026
[13] Halanay, A.: Differential equations: stability, oscillations, time lags, Academic Press, New York, 1996 · Zbl 0144.08701
[14] Krasnosel’Skii, M. A.: Topological methods in the theory of nonlinear integral equations, Macmillan, New York, 1964
[15] Vainberg, M. V., Trenogrn, V. A.: The methods of Lyapunov and Schmidt in the theorey of nonlinear equations and their further development. Russian Math. Surveys, 17(2), 1–60 (1962) · doi:10.1070/RM1962v017n02ABEH001127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.