×

Noncanonical quantization of gravity. II: Constraints and the physical Hilbert space. (English) Zbl 1009.83023

Summary: The program of quantizing the gravitational field with the help of affine field variables is continued. For completeness, a review of the selection criteria that singles out the affine fields, the alternative treatment of constraints, and the choice of the initial (before imposition of the constraints) ultralocal representation of the field operators is initially presented. As analogous examples demonstrate, the introduction and enforcement of the gravitational constraints will cause sufficient changes in the operator representations so that all vestiges of the initial ultralocal field operator representation disappear. To achieve this introduction and enforcement of the constraints, a well characterized phase space functional integral representation for the reproducing kernel of a suitably regularized physical Hilbert space is developed and extensively analyzed.
[Part I, cf. ibid. 40, 5860-5882 (1999; Zbl 0954.83010)].

MSC:

83C45 Quantization of the gravitational field
81V17 Gravitational interaction in quantum theory

Citations:

Zbl 0954.83010
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Klauder J.R., J. Math. Phys. 40 pp 5860– (1999) · Zbl 0954.83010 · doi:10.1063/1.533059
[2] DOI: 10.1006/aphy.1996.5647 · Zbl 1057.81535 · doi:10.1006/aphy.1996.5647
[3] DOI: 10.1016/S0550-3213(99)00106-6 · Zbl 0943.81018 · doi:10.1016/S0550-3213(99)00106-6
[4] J.R. Klauder, hep-th/0003297.
[5] Shabanov S.V., Phys. Rep. 326 pp 1– (2000) · doi:10.1016/S0370-1573(99)00085-X
[6] Klauder J.R., J. Phys. A 34 pp 3277– (2001) · Zbl 0980.81057 · doi:10.1088/0305-4470/34/15/306
[7] DOI: 10.1007/BF01646538 · Zbl 0191.27001 · doi:10.1007/BF01646538
[8] DOI: 10.1017/S0305004100017813 · doi:10.1017/S0305004100017813
[9] DOI: 10.1017/S0305004100017813 · doi:10.1017/S0305004100017813
[10] Watson G., J. Math. Phys. 41 pp 8072– (2000) · Zbl 0970.81034 · doi:10.1063/1.1286033
[11] Klauder J.R., Found. Phys. 31 pp 57– (2001) · doi:10.1023/A:1004151804452
[12] DOI: 10.1063/1.527812 · Zbl 0615.58008 · doi:10.1063/1.527812
[13] DOI: 10.1063/1.527812 · Zbl 0615.58008 · doi:10.1063/1.527812
[14] DOI: 10.1063/1.527812 · Zbl 0615.58008 · doi:10.1063/1.527812
[15] DOI: 10.1103/PhysRevD.43.1170 · doi:10.1103/PhysRevD.43.1170
[16] DOI: 10.1103/PhysRevD.43.1170 · doi:10.1103/PhysRevD.43.1170
[17] Tobocman W., Nuovo Cimento 3 pp 12113– (1956) · Zbl 0072.21706 · doi:10.1007/BF02785004
[18] DOI: 10.1016/0370-2693(93)90135-5 · doi:10.1016/0370-2693(93)90135-5
[19] DOI: 10.1016/0370-2693(93)90135-5 · doi:10.1016/0370-2693(93)90135-5
[20] Scholtz F.G., Ann. Phys. (N.Y.) 263 pp 119– (1998) · Zbl 0921.58081 · doi:10.1006/aphy.1997.5754
[21] DOI: 10.1103/PhysRevD.31.241 · doi:10.1103/PhysRevD.31.241
[22] DOI: 10.1103/PhysRevD.31.241 · doi:10.1103/PhysRevD.31.241
[23] DOI: 10.1103/PhysRevD.31.241 · doi:10.1103/PhysRevD.31.241
[24] Klauder J.R., General Relativity and Gravitation 6 pp 13– (1975) · doi:10.1007/BF00766595
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.