×

Exact solution to an approximate sine-Gordon equation in \((n+1)\)-dimensional space. (English) Zbl 0998.35046

Summary: In this Letter, using the qualitative theory of ordinary differential equations, we give a qualitative analysis to a two-dimensional plane autonomous system which is equivalent to an approximate sine-Gordon equation. Then using the first integral method, exact solutions to the approximate sine-Gordon equation in \((n+1)\)-dimensional space are expressed explicitly.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dodd, R. K.; Eilbeck, J. C.; Gibbons, J. D.; Morris, H. C., Solitons and Nonlinear Wave Equations (1982), London Academic Press · Zbl 0496.35001
[2] Drazin, P. G.; Johnson, R. S., Solitons: An Introduction (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0661.35001
[3] Bishop, A. R.; Fesser, K.; Lomdahl, P. S., Phys. D, 7, 259 (1983)
[4] Overman, E. A.; McLaughlin, D. W.; Bishop, A. R., Phys. D, 19, 1 (1986)
[5] Levi, M., Beating modes in the Josephson junction, (Chandra, J., Chaos in Nonlinear Dynamical Systems (1984), Soc. for Industr. & Appl. Mathematics: Soc. for Industr. & Appl. Mathematics Philadelphia) · Zbl 0615.34032
[6] Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, (Applied Mathematical Science, 68 (1998), Springer-Verlag: Springer-Verlag New York) · Zbl 0871.35001
[7] Qian, M.; Qin, W. X.; Wang, G. X.; Zhu, S., J. Nonlin. Sci., 10, 417 (2000)
[8] Wang, G. X.; Zhu, S., Appl. Math. Comput., 117, 257 (2001)
[9] Wang, G. X.; Zhu, S., Arch. Math., 75, 283 (2000)
[10] Qin, W. X.; Zhou, S. F., Acta Math. Appl. Sinica, 14, 260 (1998)
[11] Wang, G. X.; Zhu, S., J. Math. Phys., 38, 3137 (1997)
[12] Zhou, S. F., Appl. Math. Lett., 12, 95 (1999)
[13] Wang, M., J. Lanzhou Univ., 32, 1 (1996)
[14] Hirota, R., J. Phys. Soc. Japan, 35, 1566 (1973)
[15] Zagrodzinsky, J., Phys. Lett. A, 72, 284 (1979)
[16] Christiansen, P. L.; Olsen, O. H., Phys. Scrip., 20, 531 (1979)
[17] Leibbrandt, G., Phys. Rev. Lett., 41, 435 (1978)
[18] Kaliappan, P.; Lakhshmanan, M., J. Phys. A (Math. Gen.), 12, L249 (1979)
[19] Christiansen, P. L.; Lomdahl, P. S., Phys. D, 2, 482 (1981)
[20] Argyris, J.; Haase, M.; Heinrich, J. C., Comput. Methods Appl. Mech. Engrg., 86, 1 (1991)
[21] Ha, J.; Nakagiri, S., Funkcial. Ekvac., 41, 1 (1998)
[22] Djidjeli, K.; Price, W. G.; Twizell, E. H., J. Engrg. Math., 29, 347 (1995)
[23] Kundu, A., J. Math. Phys., 25, 3433 (1984)
[24] Wang, M. L., Phys. Lett. A, 213, 279 (1996)
[25] Feng, Z.; Ji, W.; Fei, S., Math. Prac. Theory, 27, 222 (1997)
[26] Gao, G., Sci. Sinica (Ser. A), 28, 616 (1985)
[27] Feng, Z., Phys. Lett. A, 293, 57 (2002)
[28] Hale, J. K., Ordinary Differential Equations (1980), Wiley: Wiley New York · Zbl 0186.40901
[29] Ding, T.; Li, C., Qualitative Theory of Ordinary Differential Equations (1991), Peking Univ. Press: Peking Univ. Press Peking
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.