×

Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations. (English) Zbl 1308.35322

Summary: The fractional subequation method is applied to solve Cahn-Hilliard and Klein-Gordon equations of fractional order. The accuracy and efficiency of the scheme are discussed for these illustrative examples.

MSC:

35R11 Fractional partial differential equations
35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, Mathematics in Science and Engineering, 198 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008
[2] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Yverdon, Switzerland: Gordon and Breach Science Publishers, Yverdon, Switzerland · Zbl 0818.26003
[3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (2006), Amsterdam, The Netherlands: Elsevier Science B.V., Amsterdam, The Netherlands · Zbl 1092.45003
[4] Magin, R. L., Fractional Calculus in Bioengineering (2006), Redding, Calif, USA: Begell House, Redding, Calif, USA
[5] Hilfer, R., Applications of Fractional Calculus in Physics (2000), River Edge, NJ, USA: World Scientific Publishing, River Edge, NJ, USA · Zbl 0998.26002 · doi:10.1142/9789812817747
[6] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (2010), London, UK: Imperial College Press, London, UK · Zbl 1210.26004 · doi:10.1142/9781848163300
[7] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus: Models and Numerical Methods. Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3 (2012), Hackensack, NJ, USA: World Scientific Publishing, Hackensack, NJ, USA · Zbl 1248.26011 · doi:10.1142/9789814355216
[8] Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, 2004 (2010), Berlin, Germany: Springer, Berlin, Germany · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[9] Klimek, M., On Solutions of Linear Fractional Differential Equations of a Variational Type (2009), Czestochowa, Poland: The Publishing Office of Czestochowa University of Technology, Czestochowa, Poland
[10] Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Physical Review E, 53, 2, 1890-1899 (1996) · doi:10.1103/PhysRevE.53.1890
[11] Riewe, F., Mechanics with fractional derivatives, Physical Review E, 55, 3, 3581-3592 (1997) · doi:10.1103/PhysRevE.55.3581
[12] Klimek, M., Lagrangean and Hamiltonian fractional sequential mechanics, Czechoslovak Journal of Physics, 52, 11, 1247-1253 (2002) · Zbl 1064.70013 · doi:10.1023/A:1021389004982
[13] Agrawal, O. P., Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272, 1, 368-379 (2002) · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4
[14] Baleanu, D.; Avkar, T., Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, Nuovo Cimento della Societa Italiana di Fisica B, 119, 1, 73-79 (2004)
[15] Lu, J. G.; Chen, G., A note on the fractional-order Chen system, Chaos, Solitons and Fractals, 27, 3, 685-688 (2006) · Zbl 1101.37307 · doi:10.1016/j.chaos.2005.04.037
[16] Daftardar-Gejji, V.; Jafari, H., Solving a multi-order fractional differential equation using Adomian decomposition, Applied Mathematics and Computation, 189, 1, 541-548 (2007) · Zbl 1122.65411 · doi:10.1016/j.amc.2006.11.129
[17] Jafari, H.; Nazari, M.; Baleanu, D.; Khalique, C. M., A new approach for solving a system of fractional partial differential equations · Zbl 1381.35221
[18] Jafari, H.; Tajadodi, H.; Baleanu, D., A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials, Fractional Calculus and Applied Analysis, 16, 109-122 (2013) · Zbl 1312.34016
[19] Jafari, H.; Tajadodi, H., He’s variational iteration method for solving fractional Riccati differential equation, International Journal of Differential Equations, 2010 (2010) · Zbl 1207.34020
[20] Jafari, H.; Das, S.; Tajadodi, H., Solving a multi-order fractional differential equation using homotopy analysis method, Journal of King Saud University, 23, 2, 151-155 (2011)
[21] Jafari, H.; Kadkhoda, N.; Tajadodi, H.; Hosseini Matikolai, S. A., Homotopy perturbation pade technique for solving fractional riccati differential equations, International Journal of Nonlinear Sciences and Numerical Simulation, 11, 271-275 (2010) · Zbl 1401.34011
[22] Huang, Q.; Huang, G.; Zhan, H., A finite element solution for the fractional advection-dispersion equation, Advances in Water Resources, 31, 12, 1578-1589 (2008) · doi:10.1016/j.advwatres.2008.07.002
[23] Odibat, Z.; Momani, S., Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos, Solitons & Fractals, 36, 1, 167-174 (2008) · Zbl 1152.34311 · doi:10.1016/j.chaos.2006.06.041
[24] Zhang, S.; Zong, Q. A.; Liu, D.; Gao, Q., A generalized exp-function method for fractional Riccati differential equations, Communications in Fractional Calculus, 1, 48-52 (2010)
[25] Zhang, S.; Zhang, H.-Q., Fractional sub-equation method and its applications to nonlinear fractional PDEs, Physics Letters A, 375, 7, 1069-1073 (2011) · Zbl 1242.35217 · doi:10.1016/j.physleta.2011.01.029
[26] Wang, M. L., Solitary wave solutions for variant Boussinesq equations, Physics Letters A, 199, 3-4, 169-172 (1995) · Zbl 1020.35528 · doi:10.1016/0375-9601(95)00092-H
[27] Jumarie, G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Computers & Mathematics with Applications, 51, 9-10, 1367-1376 (2006) · Zbl 1137.65001 · doi:10.1016/j.camwa.2006.02.001
[28] Jumarie, G., Cauchy’s integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order, Applied Mathematics Letters, 23, 12, 1444-1450 (2010) · Zbl 1202.30068 · doi:10.1016/j.aml.2010.08.001
[29] Guo, S.; Mei, L.; Li, Y.; Sun, Y., The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Physics Letters A, 376, 4, 407-411 (2012) · Zbl 1255.37022 · doi:10.1016/j.physleta.2011.10.056
[30] Choo, S. M.; Chung, S. K.; Lee, Y. J., A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient, Applied Numerical Mathematics, 51, 2-3, 207-219 (2004) · Zbl 1112.65078 · doi:10.1016/j.apnum.2004.02.006
[31] Gurtin, M. E., Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92, 3-4, 178-192 (1996) · Zbl 0885.35121 · doi:10.1016/0167-2789(95)00173-5
[32] Kim, J., A numerical method for the Cahn-Hilliard equation with a variable mobility, Communications in Nonlinear Science and Numerical Simulation, 12, 8, 1560-1571 (2007) · Zbl 1118.35049 · doi:10.1016/j.cnsns.2006.02.010
[33] Sirendaoreji, Auxiliary equation method and new solutions of Klein-Gordon equations, Chaos, Solitons and Fractals, 31, 4, 943-950 (2007) · Zbl 1143.35341 · doi:10.1016/j.chaos.2005.10.048
[34] Kolwankar, K. M.; Gangal, A. D., Local fractional Fokker-Planck equation, Physical Review Letters, 80, 2, 214-217 (1998) · Zbl 0945.82005 · doi:10.1103/PhysRevLett.80.214
[35] Zhou, Y.; Wang, M.; Wang, Y., Periodic wave solutions to a coupled KdV equations with variable coefficients, Physics Letters A, 308, 1, 31-36 (2003) · Zbl 1008.35061 · doi:10.1016/S0375-9601(02)01775-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.