×

A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems. (English) Zbl 1307.65153

The authors are concerned with the development of residual-type a posteriori error estimators for a recently introduced weak Galerkin finite element method, i.e., in which differential operators are approximated by weak forms as distributions. Moreover, they provide an a posteriori error estimator, together with a theoretical upper and lower bound.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations

Software:

iFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42(6), 2320-2341 (2005) · Zbl 1085.65102 · doi:10.1137/S0036142903425112
[2] Alonso, A.: Error estimators for a mixed method. Numer. Math. 74(4), 385-395 (1996) · Zbl 0866.65068 · doi:10.1007/s002110050222
[3] Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66, 465-476 (1997) · Zbl 0864.65068 · doi:10.1090/S0025-5718-97-00837-5
[4] Chen, L.: \[i\] iFEM: An integrated finite element methods package in MATLAB. University of California at Irvine, Technical Report (2009)
[5] Chen, L., Holst, M., Xu, J.: Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78, 35-53 (2009) · Zbl 1198.65211 · doi:10.1090/S0025-5718-08-02155-8
[6] Chen, L., Yie, X., Wang, J., Wang, Y.: Multilevel preconditioners for weak Galerkin methods, In preparation (2013)
[7] Chen, Z., Dai, S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Sci. Comput. 24(2), 443-462 (2002) · Zbl 1032.65119 · doi:10.1137/S1064827501383713
[8] Dari, V., Duran, E., Padra, R.G., Vampa, C.: A posteriori error estimators for nonconforming finite element methods. Math. Model. Numer. Anal. 30, 385-400 (1996) · Zbl 0853.65110
[9] Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106-1124 (1996) · Zbl 0854.65090 · doi:10.1137/0733054
[10] Dryja, M., Sarkis, M.V., Widlund, O.B.: Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72(3), 313-348 (1996) · Zbl 0857.65131 · doi:10.1007/s002110050172
[11] Duran, R.G.: Mixed Finite Element Methods. Class Notes (2007)
[12] Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986). 87:52227 · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[13] Kellogg, R.B.: On the Poisson equation with intersecting interfaces. Appl. Anal. 4(2), 101-129 (1974) · Zbl 0307.35038 · doi:10.1080/00036817408839086
[14] Kossaczky, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275-288 (1994) · Zbl 0823.65119 · doi:10.1016/0377-0427(94)90034-5
[15] Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15(4), 326-347 (1989) · Zbl 0900.65306 · doi:10.1145/76909.76912
[16] Mu, L., Wang, J., Wang, Y., Ye, X.: A weak Galerkin mixed finite element method for Biharmonic equations. arXiv:1210.3818 (2012) · Zbl 1283.65109
[17] Mu, L., Wang, J., Wei, G., Ye, X., Zhao, S.: Weak Galerkin method for the elliptic interface problem. J. Comput. Phys. doi:10.1016/j.jcp.2013.04.042 (2013) · Zbl 1349.65472
[18] Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method with polynomial reduction. arXiv:1304.6481 (2012) · Zbl 1315.65099
[19] Mu, L., Wang, J., Ye, X., Zhang, S.: A \[C^0\] C0-weak Galerkin finite element method for the biharmonic equation. arXiv:1212.0250 (2012) · Zbl 1305.65233
[20] Mu, L., Wang, J., Ye, X., Zhao, S.: Numerical studies on the weak Galerkin method for the Helmholtz equation with large wave number. arXiv:1111.0671 (2011) · Zbl 0866.65068
[21] Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16(1), 47-75 (2002) · Zbl 0997.65123 · doi:10.1023/A:1014221125034
[22] Verfürth, R.: A Review of a posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Wiley Teubner, Chichester and Newyork (1996) · Zbl 0853.65108
[23] Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103-115 (2013) · Zbl 1261.65121 · doi:10.1016/j.cam.2012.10.003
[24] Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comp., to appear (2013) · Zbl 1261.65121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.