×

An efficient parallel algorithm for the numerical solution of fractional differential equations. (English) Zbl 1273.65101

Summary: The numerical solution of differential equations of fractional order is known to be a computationally very expensive problem due to the nonlocal nature of the fractional differential operators. We demonstrate that parallelization may be used to overcome these difficulties. To this end we propose to implement the fractional version of the second-order Adams-Bashforth-Moulton method on a parallel computer. According to many recent publications, this algorithm has been successfully applied to a large number of fractional differential equations arising from a variety of application areas. The precise nature of the parallelization concept is discussed in detail and some examples are given to show the viability of our approach.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
34A08 Fractional ordinary differential equations
65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
65Y05 Parallel numerical computation
68W10 Parallel algorithms in computer science

Software:

Scalasca; RODAS; VAMPIR
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (In preparation).; · Zbl 1248.26011
[2] H. Brunst, D. Hackenberg, G. Juckeland and H. Rohling, Comprehensive performance tracking with Vampir 7. Tools for High Performance Computing 2009 (M. S. Müller, M. M. Resch, A. Schulz and W. E. Nagel, Eds.) Springer, Berlin (2010), 17-29. http://dx.doi.org/10.1007/978-3-642-11261-4_2;
[3] H. Brunst, M. Winkler, W. E. Nagel and H.-C. Hoppe, Performance optimization for large scale computing: The scalable VAMPIR approach. Computational Science — ICCS 2001, Part II (au]V. N. Alexandrov, J. J. Dongarra, B. A. Juliano, R. S. Renner and C. J. K. Tan, Eds.), Springer, Berlin (2001), 751-760. http://dx.doi.org/10.1007/3-540-45718-6_80; · Zbl 0983.68692
[4] K. Diethelm, Efficient solution of multi-term fractional differential equations using P(EC)mE methods. Computing 71 (2003), 305-319. http://dx.doi.org/10.1007/s00607-003-0033-3; · Zbl 1035.65066
[5] K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin (2010); http://www.springer.com/mathematics/dynamical+systems/book/978-3-642-14573-5 http://dx.doi.org/10.1007/978-3-642-14574-2; · Zbl 1215.34001
[6] K. Diethelm, N.J. Ford and A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 29 (2002), 3-22. http://dx.doi.org/10.1023/A:1016592219341; · Zbl 1009.65049
[7] K. Diethelm, N.J. Ford and A.D. Freed, Detailed error analysis for a fractional Adams method. Numer. Algorithms 36 (2004), 31-52. http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be; · Zbl 1055.65098
[8] K. Diethelm, N.J. Ford, A.D. Freed and Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194 (2005), 743-773. http://dx.doi.org/10.1016/j.cma.2004.06.006; · Zbl 1119.65352
[9] N.J. Ford and J.A. Connolly, Comparison of numerical methods for fractional differential equations. Commun. Pure Appl. Anal. 5 (2006), 289-307. http://dx.doi.org/10.3934/cpaa.2006.5.289; · Zbl 1133.65115
[10] N.J. Ford and A.C. Simpson, The numerical solution of fractional differential equations: Speed versus accuracy. Numer. Algorithms 26 (2001), 333-346.; · Zbl 0976.65062
[11] M. Geimer, F. Wolf, B.J.N. Wylie, E. Ábrahám, D. Becker and B. Mohr, The Scalasca performance toolset architecture. Concurrency and Computation: Practice and Experience 22 (2010), 702-719.;
[12] M. Geimer, F. Wolf, B.J.N. Wylie, D. Becker, D. Böhme, W. Frings, M.-A. Hermanns, B. Mohr and Z. Szebenyi, Recent developments in the Scalasca toolset. Tools for High Performance Computing 2009 (M.S. Müller, M.M. Resch, A. Schulz and W.E. Nagel, Eds.) Springer, Berlin (2010), 39-51. http://dx.doi.org/10.1007/978-3-642-11261-4_4;
[13] GNS mbH, The Numerical Forming Simulation Software Package INDEED; http://www.gns-mbh.com/indeed.html;
[14] GWT-TUD GmbH, Vampir Performance Optimization; http://www.vampir.eu;
[15] E. Hairer, S.P. Nøsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems. 2nd ed., Springer, Berlin (1993).; · Zbl 0789.65048
[16] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1991).; · Zbl 0729.65051
[17] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).; · Zbl 0998.26002
[18] Jülich Supercomputing Centre, SCALASCA — Scalable Performance Analysis of Large-Scale Applications; http://www.scalasca.org;
[19] R. Klages, G. Radons and I. M. Sokolov (Eds.), Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008).;
[20] A. Le Méhauté, J.A. Tenreiro Machado, J.C. Trigeassou and J. Sabatier (Eds.), Fractional Differentiation and its Applications. Ubooks, Neusä.;
[21] C. Lubich, Runge-Kutta theory for Volterra and Abel integral equations of the second kind. Math. Comp. 41 (1983), 87-102. http://dx.doi.org/10.1090/S0025-5718-1983-0701626-6; · Zbl 0538.65091
[22] C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comp. 45 (1985), 463-469. http://dx.doi.org/10.1090/S0025-5718-1985-0804935-7; · Zbl 0584.65090
[23] R. Magin, Fractional Calculus in Bioengineering. Begell House, Redding (2006).;
[24] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard; http://www.mpi-forum.org/docs/docs.html; · Zbl 0875.68206
[25] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix and W.E. Nagel, Developing scalable applications with Vampir, VampirServer and VampirTrace. Parallel Computing: Architectures, Algorithms and Applications (C. Bischof, M. Bücker, P. Gibbon, G. R. Joubert, T. Lippert, B. Mohr and F. Peters, Eds.), IOS Press, Amsterdam (2008), 637-644.;
[26] W.E. Nagel, A. Arnold, M. Weber, H.-C. Knoppe and K. Solchenbach, VAMPIR: Visualization and analysis of MPI resources. Supercomputer 12 (1996), 69-80.;
[27] K.B. Oldham and J. Spanier, The Fractional Calculus. Academic Press, New York (1974).; · Zbl 0292.26011
[28] OpenMP Architecture Review Board, The OpenMP API Specification for Parallel Programming; http://www.openmp.org;
[29] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).; · Zbl 0924.34008
[30] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993).; · Zbl 0818.26003
[31] M.S. Tavazoei, Comments on stability analysis of a class of nonlinear fractional-order systems. IEEE Trans. Circuits Systems II 56 (2009), 519-520. http://dx.doi.org/10.1109/TCSII.2009.2020944;
[32] M.S. Tavazoei, M. Haeri, S. Bolouki and M. Siami, Stability preservation analysis for frequency-based methods in numerical simulation of fractional-order systems. SIAM J. Numer. Anal. 47 (2008), 321-328. http://dx.doi.org/10.1137/080715949; · Zbl 1203.26012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.