×

A three-dimensional numerical internal tidal model involving adjoint method. (English) Zbl 1253.86001

Summary: A three-dimensional internal tidal model involving the adjoint method is constructed based on the nonlinear, time-dependent, free-surface hydrodynamic equations in spherical coordinates horizontally, and isopycnic coordinates vertically, subject to the hydrostatic approximations. This model consists of two submodels: the forward model is used for the simulation of internal tides, while the adjoint model is used for optimization of modal parameters. Mode splitting technique is employed in both forward and adjoint models. In this model, the adjoint method is employed to estimate model parameters by assimilating the interior observations. As a preliminary feasibility study, a set of ideal experiments with the model-generated pseudo-observations of surface currents are performed to invert the open boundary conditions (OBCs). In the ideal experiments, 14 kinds of bottom topographies and six kinds of predetermined distributions of OBCs are considered to examine their influence on experiment results. The inversion obtained satisfying results and all the predetermined distributions were successfully inverted. Analysis of results suggests the following: in the case where the spatial variation of the OBC distribution is great or the open boundary is close to a rough topography, the results will be comparatively poor, but still satisfactory; both the tidal elevations and currents can be simulated very accurately with the surface currents at several observation points; the assimilation precision could be reliable and able to reflect both of the inversion and simulation results in the whole field. The performance and results of ideal experiments give a preliminary indication that the construction of this model is successful.

MSC:

86-08 Computational methods for problems pertaining to geophysics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
86A05 Hydrology, hydrography, oceanography
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

Software:

TAF; MITgcm
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Munk, Abyssal recipes II: energetics of tidal and wind mixing, Deep-Sea Research 45 pp 1977– (1998) · doi:10.1016/S0967-0637(98)00070-3
[2] Egbert, Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data, Nature 405 pp 775– (2000) · doi:10.1038/35015531
[3] Rudnick, From tides to mixing along the Hawaiian Ridge, Science 301 pp 355– (2003) · doi:10.1126/science.1085837
[4] Egbert, Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum, Journal of Geophysical Research 109 pp C03003– (2004) · doi:10.1029/2003JC001973
[5] Polzin, Spatial variability of turbulent mixing in the abyssal ocean, Science 276 pp 93– (1997) · doi:10.1126/science.276.5309.93
[6] Ledwell, Evidence for enhanced mixing over rough topography in the abyssal ocean, Nature 403 pp 179– (2000) · doi:10.1038/35003164
[7] Niwa, Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean, Journal of Geophysical Research 106 pp 22441– (2001) · doi:10.1029/2000JC000770
[8] Egbert, Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altmeter data, Journal of Geophysical Research 106 (C10) pp 22475– (2001) · doi:10.1029/2000JC000699
[9] Dushaw, Barotropic and baroclinic tides in the Central North Pacific Ocean determined from long-range reciprocal acoustic transmissions, Journal of Physical Oceanography 25 (4) pp 631– (1995) · doi:10.1175/1520-0485(1995)025<0631:BABTIT>2.0.CO;2
[10] Ray, Surface manifestation of internal tides generated near Hawaii, Geophysical Research Letters 23 pp 2101– (1996) · doi:10.1029/96GL02050
[11] Cummins, North Pacific internal tides from the Aleutian Ridge: altimeter observations and modeling, Journal of Marine Research 59 pp 167– (2001) · doi:10.1357/002224001762882628
[12] Pinkel, Ocean mixing studied near Hawaiian Ridge, EOS, Transactions, American Geophysical Union 81 (46) pp 545– (2000) · doi:10.1029/EO081i046p00545-02
[13] Bennett, Open ocean modeling as an inverse problem: tidal theory, Journal of Physical Oceanography 12 pp 1004– (1982) · doi:10.1175/1520-0485(1982)012<1004:OOMAAI>2.0.CO;2
[14] McIntosh, Open ocean modeling as an inverse problem: M2 tides in Bass Strait, Journal of Physical Oceanography 14 pp 601– (1984) · doi:10.1175/1520-0485(1984)014<0601:OOMAAI>2.0.CO;2
[15] Le Dimet, Variational algorithms for analysis and assimilation of meteorological observations: theory aspects, Tellus 38A pp 97– (1986) · doi:10.1111/j.1600-0870.1986.tb00459.x
[16] Talagrand, Variational assimilation of meteorological observations with the adjoint vorticity equation. I: theory, Quarterly Journal of the Royal Meteorological Society 113 pp 1311– (1987) · doi:10.1256/smsqj.47811
[17] Courtier, Variational assimilation of meteorological observations with the adjoint vorticity equation. II: numerical results, Quarterly Journal of the Royal Meteorological Society 113 pp 1329– (1987) · doi:10.1256/smsqj.47812
[18] Bennett, Inverse Methods in Physical Oceanography (1992) · Zbl 0782.76002 · doi:10.1017/CBO9780511600807
[19] Bennett, Inverse Modeling of the Ocean and Atmosphere (2002) · Zbl 1043.86003 · doi:10.1017/CBO9780511535895
[20] Carter, Flow and mixing around a small seamount on Kaena Ridge, Hawaii, Journal of Physical Oceanography 36 (6) pp 1036– (2006) · doi:10.1175/JPO2924.1
[21] Lee, Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge, Journal of Physical Oceanography 36 (6) pp 1165– (2006) · doi:10.1175/JPO2886.1
[22] Lewis, Dynamic Data Assimilation: A Least Squares Approach (2006) · Zbl 1268.62003 · doi:10.1017/CBO9780511526480
[23] Klymak, An estimate of tidal energy lost to turbulence at the Hawaiian Ridge, Journal of Physical Oceanography 36 (14) pp 1148– (2006) · doi:10.1175/JPO2885.1
[24] Sasaki, A fundamental study of the numerical prediction based on the variational principle, Journal of the Meteorological Society of Japan 33 pp 262– (1955) · doi:10.2151/jmsj1923.33.6_262
[25] Sasaki, An objective analysis based on the variational method, Journal of the Meteorological Society of Japan 36 pp 77– (1958) · doi:10.2151/jmsj1923.36.3_77
[26] Sasaki, Proposed inclusion of time-variation terms, observational and theoretical in numerical variational objective analysis, Journal of the Meteorological Society of Japan 47 pp 115– (1969) · doi:10.2151/jmsj1965.47.2_115
[27] Sasaki, Some basic formalisms in numerical variational analysis, Monthly Weather Review 98 pp 875– (1970a) · doi:10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2
[28] Sasaki, Numerical variational analysis formulated under the constraints as determined by long-wave equations and a low-pass filter, Monthly Weather Review 98 pp 884– (1970b) · doi:10.1175/1520-0493(1970)098<0884:NVAFUT>2.3.CO;2
[29] Sasaki, Numerical variational analysis with weak constraint and application to surface analysis of severe storm gust, Monthly Weather Review 98 pp 899– (1970c) · doi:10.1175/1520-0493(1970)098<0899:NVAWWC>2.3.CO;2
[30] Sasaki, A theoretical interpretation of anisotropically weighted smoothing on the basis of numerical variational analysis, Monthly Weather Review 99 pp 698– (1971) · doi:10.1175/1520-0493(1971)099<0698:ATIOAW>2.3.CO;2
[31] Navon, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications pp 21– (2009) · doi:10.1007/978-3-540-71056-1_2
[32] Le Dimet FX A general formalism of variational analysis Technical Report OK 73091 1982 22 1 34
[33] Lewis, The use of adjoint equations to solve a variational adjustment problem with advective constraints, Tellus 37A pp 309– (1985) · doi:10.1111/j.1600-0870.1985.tb00430.x
[34] Courtier P Experiments in data assimilation using the adjoint model technique Workshop on High-Resolution Analysis 1985
[35] Bennett, Array design by inverse method, Progress in Oceanography 15 pp 129– (1985) · doi:10.1016/0079-6611(85)90033-3
[36] Prevost, A variational method for inverting hydrographic data, Journal of Marine Research 44 pp 1– (1986) · doi:10.1357/002224086788460175
[37] Thacker, Fitting dynamics to data, Journal of Geophysical Research 93 pp 1227– (1988) · doi:10.1029/JC093iC02p01227
[38] Panchang, Modelling Marine System pp 5– (1989)
[39] Yu, Variational estimation of the wind stress drag coefficient and the oceanic eddy viscosity profile, Journal of Physical Oceanography 21 pp 709– (1991) · doi:10.1175/1520-0485(1991)021<0709:VEOTWS>2.0.CO;2
[40] Yu, On the initial condition parameter estimation, Journal of Physical Oceanography 22 pp 1361– (1992) · doi:10.1175/1520-0485(1992)022<1361:OTICIP>2.0.CO;2
[41] Das, On the estimation of parameters of hydraulic models by assimilation of periodic tidal data, Journal of Geophysical Research 96 (C8) pp 15187– (1991) · doi:10.1029/91JC01318
[42] Ghil, Advances in Geophysics 33 pp 141– (1991)
[43] Das, Variational parameter estimation for a two-dimensional numerical tidal model, International Journal for Numerical Methods in Fluids 15 pp 313– (1992) · Zbl 0825.76109 · doi:10.1002/fld.1650150305
[44] Lardner, Optimal estimation of parameters for a two-dimensional hydro-dynamical model of the Arabian gulf, Journal of Geophysical Research 98 (C10) pp 18229– (1993) · doi:10.1029/93JC01411
[45] Seiler, Estimation of open boundary conditions with the adjoint method, Journal of Geophysical Research 98 pp 22855– (1993) · doi:10.1029/93JC02376
[46] Lardner, Optimal estimation of eddy viscosity for a quasi-three dimensional numerical tidal and storm surge model, International Journal for Numerical Methods in Fluids 18 pp 295– (1994) · Zbl 0794.76057 · doi:10.1002/fld.1650180305
[47] Lardner, Optimal estimation of eddy viscosity and friction coefficients for a quasi-three-dimensional numerical tidal model, Atmosphere-Ocean 33 (3) pp 581– (1995) · doi:10.1080/07055900.1995.9649546
[48] Navon, Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dynamics of Atmospheres and Oceans 27 (1-4) pp 55– (1998) · doi:10.1016/S0377-0265(97)00032-8
[49] Lu, Adjoint data assimilation in coupled atmosphere-ocean models: determining initial model parameters in a simple equatorial model, Quarterly Journal of the Royal Meteorological Society 123 pp 2115– (1997) · doi:10.1256/smsqj.54315
[50] Lu, Adjoint data assimilation in coupled atmosphere-ocean models: determining initial conditions in a simple equatorial model, Journal of the Meteorological Society of Japan 76 pp 737– (1998a) · doi:10.2151/jmsj1965.76.5_737
[51] Lu, On determining initial conditions and parameters in a simple couple atmosphere-ocean model by adjoint data assimilation, Tellus 50A pp 534– (1998b) · doi:10.1034/j.1600-0870.1998.00011.x
[52] Ullman, Model parameter estimation from data assimilation modelling: temporal and spatial variability of the bottom drag coefficient, Journal of Geophysical Research 103 pp 5531– (1998) · doi:10.1029/97JC03178
[53] Marotzke, Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity, Journal of Geophysical Research 104 pp 29529– (1999) · doi:10.1029/1999JC900236
[54] Ayoub, Estimation of boundary values in a North Atlantic circulation model using an adjoint method, Ocean Modelling 12 pp 319– (2006) · doi:10.1016/j.ocemod.2005.06.003
[55] Giering, Recipes for adjoint code construction, ACM Transactions on Mathematical Software 24 pp 437– (1998) · Zbl 0934.65027 · doi:10.1145/293686.293695
[56] Heemink, Inverse 3D shallow water flow modeling of the continental shelf, Continental Shelf Research 22 pp 465– (2002) · doi:10.1016/S0278-4343(01)00071-1
[57] Zhang, Assimilation of water level data into a coastal hydrodynamic model by an adjoint optimal technique, Continental Shelf Research 22 pp 1909– (2002) · doi:10.1016/S0278-4343(02)00067-5
[58] Zhang, Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique, Continental Shelf Research 23 pp 1055– (2003) · doi:10.1016/S0278-4343(03)00105-5
[59] Peng, Effect of determining initial conditions by four-dimensional variational data assimilation on storm surge forecasting, Ocean Modelling 14 pp 1– (2006) · doi:10.1016/j.ocemod.2006.03.005
[60] Lu, Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method, Continental Shelf Research 26 pp 1905– (2006) · doi:10.1016/j.csr.2006.06.007
[61] Zhang, Parameter estimation for a three-dimensional numerical barotropic tidal model with adjoint method, International Journal for Numerical Methods in Fluids 57 pp 47– (2008) · Zbl 1388.86013 · doi:10.1002/fld.1620
[62] Zhang, Inversion of three-dimensional tidal currents in marginal seas by assimilating satellite altimetry, Computer Methods in Applied Mechanics and Engineering 199 pp 3125– (2010) · Zbl 1225.76300 · doi:10.1016/j.cma.2010.06.014
[63] Jan, 2007. Generation of diurnal K 1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea, Journal of Geophysical Research 112 pp C06019– (2007) · doi:10.1029/2006JC004003
[64] Jan, Numerical Study of Baroclinic Tides in Luzon Strait, Journal of Oceanography 64 pp 789– (2008) · doi:10.1007/s10872-008-0066-5
[65] Niwa, Three-dimensional numerical simulation of M2 internal tides in the East China Sea, Journal of Geophysical Research 109 pp C04027– (2004) · doi:10.1029/2003JC001923
[66] Simmons, Internal wave generation in a global baroclinic tide model, Deep Sea Research Part II: Topical Studies in Oceanography 51 pp 3043– (2004) · doi:10.1016/j.dsr2.2004.09.015
[67] Khatiwala, Generation of internal tides in an ocean of finite depth: analytical and numerical calculations, Deep Sea Research Part I: Oceanographic Research Papers 50 pp 3– (2003) · doi:10.1016/S0967-0637(02)00132-2
[68] Legg, Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography, Deep Sea Research Part II: Topical Studies in Oceanography 53 pp 140– (2006) · doi:10.1016/j.dsr2.2005.09.014
[69] Lu, Internal tide generation over topography: experiments with a free-surface z-level ocean model, Journal of Atmospheric and Oceanic Technology 18 pp 1076– (2001) · doi:10.1175/1520-0426(2001)018<1076:ITGOTE>2.0.CO;2
[70] Leendertse JJ Alexander RC Liu SK A Three Dimensional Model for Estuaries and Coastal Seas: Volume I, Principles of computations Report R-1417-OWRR 1973
[71] Backhaus, A three-dimensional model for the simulation of shelf sea dynamics, Deutsche Hydrographische Zeitschrift 38 pp 165– (1985) · doi:10.1007/BF02328975
[72] Casulli, Semi-implicit finite difference methods for the three dimensional shallow water flow, International Journal for Numerical Methods in Fluids 15 pp 629– (1992) · Zbl 0762.76068 · doi:10.1002/fld.1650150602
[73] Casulli, A semi-implicit finite difference method for the non-hydrostatic free-surface flow, International Journal for Numerical Methods in Fluids 30 pp 425– (1999) · Zbl 0944.76050 · doi:10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
[74] Yuan, An implicit three-dimensional fully non-hydrostatic model for free-surface flows, International Journal for Numerical Methods in Fluids 46 pp 709– (2004) · Zbl 1060.76621 · doi:10.1002/fld.778
[75] Roache, Fundamentals of Computational Fluid Dynamics (1982)
[76] Fairweather, A linear ADI method for the shallow-water equations, Journal of Computational Physics 37 pp 1– (1980) · Zbl 0454.76032 · doi:10.1016/0021-9991(80)90001-7
[77] Simons, Verification of numerical models of Lake Ontario: Part 1. Circulation in spring and early summer, Journal of Physical Oceanography 4 pp 507– (1974) · doi:10.1175/1520-0485(1974)004<0507:VONMOL>2.0.CO;2
[78] Flather, A tidal model of the north-west European continental shelf, Memoires de la Societe Royale des Sciences de Liege 10 (6) pp 141– (1976)
[79] Palma, On the implementation of passive open boundary conditions for a general circulation model: the barotropic mode, Journal of Geophysical Research 103 (C1) pp 1319– (1998) · doi:10.1029/97JC02721
[80] Nycander, Open boundary conditions for barotropic waves, Journal of Geophysical Research 108 (2003) · doi:10.1029/2002JC001529
[81] Arakawa, Methods of Computational Physics 17 pp 173– (1977)
[82] Anderson, Data assimilation in ocean models, Reports on Progress in Physics 59 pp 1209– (1996) · doi:10.1088/0034-4885/59/10/001
[83] Schwiderski, On charting global ocean tides, Reviews of Geophysics and Space Physics 18 pp 243– (1980) · doi:10.1029/RG018i001p00243
[84] Egbert, Tidal data inversion: Interpolation and inference, Progress in Oceanography 40 pp 53– (1997) · doi:10.1016/S0079-6611(97)00023-2
[85] Zou, Sequential open-boundary control by data assimilation in a limited-area model, Monthly Weather Review 123 pp 2899– (1995) · doi:10.1175/1520-0493(1995)123<2899:SOBCBD>2.0.CO;2
[86] Gejadze, Open boundary control problem for Navier-Stokes equations including a free surface: adjoint sensitivity analysis, Computers and Mathematics with Applications 52 pp 1243– (2006) · Zbl 1118.49022 · doi:10.1016/j.camwa.2006.11.004
[87] Nocedal, Numerical optimization (2006)
[88] Perry JM A class of conjugate gradient algorithms with a two-step variable-metric memory Discussion Paper 269 1977
[89] Shanno, Conjugate gradient methods with inexact searches, Mathematics of Operations Research 3 pp 244– (1978) · Zbl 0399.90077 · doi:10.1287/moor.3.3.244
[90] Liu, On the limited memory BFGS method for large scale optimization, Mathematical Programming 45 pp 503– (1989) · Zbl 0696.90048 · doi:10.1007/BF01589116
[91] Zou, Numerical experience with limited-memory Quasi-Newton methods and Truncated Newton methods, SIAM Journal on Optimization 3 (3) pp 582– (1993) · Zbl 0784.90086 · doi:10.1137/0803029
[92] Alekseev, Comparison of advanced large-scale minimization algorithms for the solution of inverse ill-posed problems, Optimization Methods and Software 24 (1) pp 63– (2009) · Zbl 1189.90221 · doi:10.1080/10556780802370746
[93] Navon, Variational data assimilation with an adiabatic version of the NMC spectral model, Monthly Weather Review 120 pp 1433– (1992) · doi:10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2
[94] Carter, Open boundary conditions for regional tidal simulations, Ocean Modelling 18 pp 194– (2007) · doi:10.1016/j.ocemod.2007.04.003
[95] Rodrigues, Simultaneous estimation of spatially dependent diffusion coefficient and source term in a nonlinear 1D diffusion problem, Mathematics and Computers in Simulation 66 pp 409– (2004) · Zbl 1050.65088 · doi:10.1016/j.matcom.2004.02.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.