×

A locally linear neuro-fuzzy model for supplier selection in cosmetics industry. (English) Zbl 1252.90011

Summary: Supplier selection and evaluation is a complicated and disputed issue in supply chain network management, by virtue of the variety of intellectual property of the suppliers, the several variables involved in supply demand relationship, the complex interactions and the inadequate information of suppliers. The recent literature confirms that neural networks achieve better performance than conventional methods in this area. Hence, in this paper, an effective artificial intelligence (AI) approach is presented to improve the decision making for a supply chain which is successfully utilized for long-term prediction of the performance data in cosmetics industry. A computationally efficient model known as locally linear neuro-fuzzy (LLNF) is introduced to predict the performance rating of suppliers. The proposed model is trained by a locally linear model tree (LOLIMOT) learning algorithm. To demonstrate the performance of the proposed model, three intelligent techniques, multi-layer perceptron (MLP) neural network, radial basis function (RBF) neural network and least square-support vector machine (LS-SVM) are considered. Their results are compared by using an available dataset in cosmetics industry. The computational results show that the presented model performs better than three foregoing techniques.

MSC:

90B06 Transportation, logistics and supply chain management
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
68T05 Learning and adaptive systems in artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dahel, N., Vendor selection and order quantity allocation in volume discount environments, Supply Chain Manage.: An Int. J., 8, 4, 334-342 (2003)
[2] Chen, C. T.; Huang, S. F., Order-fulfilment ability analysis in the supply-chain system with fuzzy operation times, Int. J. Prod. Econ., 101, 1, 185-193 (2006)
[3] Millington, A.; Eberhardt, M.; Wilkinson, B., Supplier performance and selection in China, Int. J. Oper. Prod. Manage., 26, 2, 185-201 (2006)
[4] Jayaraman, V.; Srivastava, R.; Benton, W. C., Supplier selection and order quantity allocation: a comprehensive model, J. Supply Chain Manage., 35, 2, 50-58 (1999)
[5] Ng, S. T.; Skitmore, R. M., CP-DSS: decision support system for contractor prequalification, Civil Eng. Syst.: Dec. Making Prob. Solv., 12, 2, 133-160 (1995)
[6] Cook, R. L., Case-based reasoning systems in purchasing: applications and development, Int. J. Purchas. Mater. Manage.s, 33, 1, 32-39 (1997)
[7] Khoo, L. P.; Tor, S. B.; Lee, S. S.G., The potential of intelligent software agents in the World Wide Web in the automated part procurement, Int. J. Purchas. Mater. Manage., 34, 1, 46-52 (1998)
[8] Ho, W.; Xu, X.; Dey, P. K., Multi-criteria decision making approaches for supplier evaluation and selection: a literature review, Eur. J. Oper. Res., 202, 16-24 (2010) · Zbl 1175.90223
[9] Zenz, G., Purchasing and the Management of Materials (1981), Wiley: Wiley New York
[10] Soukoup, W. R., Supplier selection strategies, J. Purchas. Mater. Manage., 23, 3, 7-12 (1987)
[11] Hinkle, C. L.; Green, P. J.; Green, P. E., Vendor evaluation using cluster analysis, J. Purchas., 5, 3, 49-58 (1969)
[12] Hou, J.; Su, D., EJB-MVC oriented supplier selection system for mass customization, J. Manuf. Technol. Manage., 18, 1, 54-71 (2007)
[13] Gencer, C.; Gürpinar, D., Analytic network process in supplier selection: a case study in an electronic firm, Appl. Math. Model., 31, 11, 2475-2486 (2007) · Zbl 1149.90350
[14] Mummalaneni, V.; Dubas, K. M.; Chao, C., Chinese purchasing managers’ preferences and trade-offs in supplier selection and performance evaluation, Indus. Market. Manage., 25, 2, 115-124 (1996)
[15] Dobler, D. W.; Burt, D. N., Purchasing and Supply Management (1996), McGraw-Hill: McGraw-Hill New York
[16] Vahdani, B.; Zandieh, M., Selecting suppliers using a new fuzzy multiple criteria decision model: the fuzzy balancing and ranking method, Int. J. Prod. Res., 48, 18, 5307-5326 (2010) · Zbl 1197.90354
[17] Seydel, J., Supporting the paradigm shift in vendor selection: multi criteria methods for sole-sourcing, Manage. Fin., 31, 3, 49-66 (2005)
[18] Talluri, S.; Narasimhan, R., Vendor evaluation with performance variability: a max-min approach, Eur. J. Oper. Res., 146, 3, 543-552 (2003) · Zbl 1037.90522
[19] Wu, T.; Shunk, D.; Blackhurst, J.; Appalla, R., AIDEA: a methodology for supplier evaluation and selection in a supplier-based manufacturing environment, Int. J. Manuf. Technol. Manage., 11, 2, 174-192 (2007)
[20] Talluri, S.; Sarkis, J., A model for performance monitoring of suppliers, Int. J. Prod. Res., 40, 16, 4257-4269 (2002) · Zbl 1027.90513
[21] Hong, G. H.; Park, S. C.; Jang, D. S.; Rho, H. M., An effective supplier selection method for constructing a competitive supply-relationship, Expert Syst. Appl., 28, 4, 629-639 (2005)
[22] Ghodsypour, S. H.; O’Brien, C., The total cost of logistics in supplier selection, under conditions of multiple sourcing, multiple criteria and capacity constraint, Int. J. Prod. Econ., 73, 1, 15-27 (2001)
[23] Karpak, B.; Kumcu, E.; Kasuganti, R. R., Purchasing materials in the supply chain: managing a multi-objective task, Eur. J. Purchas. Supp. Manage., 7, 3, 209-216 (2001)
[24] Wadhwa, V.; Ravindran, A. R., Vendor selection in outsourcing, Comput. Oper. Res., 34, 12, 3725-3737 (2007) · Zbl 1127.90064
[25] Chan, F. T.S.; Kumar, N.; Tiwari, M. K.; Lau, H. C.W.; Choy, K. L., Global supplier selection: a fuzzy-AHP approach, Int. J. Prod. Res., 46, 14, 3825-3857 (2008) · Zbl 1140.90335
[26] Wang, J. W.; Cheng, C. H.; Huang, K. C., Fuzzy hierarchical TOPSIS for supplier selection, Appl. Soft. Comput., 9, 1, 377-386 (2009)
[27] Jain, V.; Wadhwa, S.; Deshmukh, S. G., Supplier selection using fuzzy association rules mining approach, Int. J. Prod. Res., 45, 6, 1323-1353 (2007) · Zbl 1128.90522
[28] Amid, A.; Ghodsypour, S. H.; O’Brien, C., Fuzzy multi objective linear model for supplier selection in a supply chain, Int. J. Prod. Econ., 104, 2, 394-407 (2006)
[29] Roodhooft, F.; Konings, J., Vendor selection and evaluation – an activity based costing approach, Eur. J. Oper. Res., 96, 1, 97-102 (1996) · Zbl 0926.90051
[30] Mandal, A.; Deshmukh, S. G., Vendor selection using interpretive structural modeling (ISM), Int. J. Oper. Prod. Manage., 14, 6, 52-59 (1994)
[31] Chou, S. Y.; Shen, C. Y.; Chang, Y. H., Vendor selection in a modified re-buy situation using a strategy-aligned fuzzy approach, Int. J. Prod. Res., 45, 14, 3113-3133 (2007) · Zbl 1128.90514
[32] Sevkli, M.; Koh, S. C.L.; Zaim, S.; Demirbag, M.; Tatoglu, E., An application of data envelopment analytic hierarchy process for supplier selection: a case study of BEKO in Turkey, Int. J. Prod. Res., 45, 9, 1973-2003 (2007) · Zbl 1128.90537
[33] Ramanathan, R., Supplier selection problem: Integrating DEA with the approaches of total cost of ownership and AHP, Supp. Chain Manage.: An Int. J., 12, 4, 258-261 (2007)
[34] Yang, G.; Huang, W. J.; Lei, L. L., Using AHP and TOPSIS approaches in nuclear power plant equipment supplier selection, Key Eng. Mater., 419, 2, 761-764 (2009)
[35] Mendoza, A.; Santiago, E.; Ravindran, A. R., A three-phase multi criteria method to the supplier selection problem, Int. J. Ind. Eng., 15, 2, 195-210 (2008)
[36] Ha, S. H.; Krishnan, R., A hybrid approach to supplier selection for the maintenance of a competitive supply chain, Expert Syst. Appl., 34, 2, 1303-1311 (2008)
[37] Mendoza, A.; Ventura, J. A., An effective method to supplier selection and order quantity allocation, Int. J. Business Syst. Res., 2, 1, 1-15 (2008)
[38] Xia, W.; Wu, Z., Supplier selection with multiple criteria in volume discount environments, OMEGA - Int. J. Manage. Sci., 35, 5, 494-504 (2007)
[39] Demirtas, E. A.; Üstün, Ö., An integrated multi-objective decision making process for supplier selection and order allocation, OMEGA - Int. J. Manage. Sci., 36, 1, 76-90 (2008)
[40] Demirtas, E. A.; Üstün, Ö., Analytic network process and multi-period goal programming integration in purchasing decisions, Comput. Indus. Eng., 56, 2, 677-690 (2009)
[41] Kuo, R. J.; Wang, Y. C.; Tien, F. C., Integration of artificial neural network and MADA methods for green supplier selection, J. Clean Prod., 18, 1161-1170 (2010)
[42] Talluri, S.; Vickery, S. K.; Narayanan, S., Optimization models for buyer– supplier negotiations, Int. J. Phys. Distrib. Log. Manage., 38, 7, 551-561 (2008)
[43] Celebi, D.; Bayraktar, D., An integrated neural network and data envelopment analysis for supplier evaluation under incomplete information, Expert Syst. Appl., 35, 1698-1710 (2008)
[44] Wu, D., Supplier selection: A hybrid model using DEA, decision tree and neural network, Expert Syst. Appl., 36, 9105-9112 (2009)
[45] Lau, H. C.W.; Lee, C. K.M.; Ho, G. T.S.; Pun, K. F.; Choy, K. L., A performance benchmarking system to support supplier selection, Int. J. Business Performance Manage., 8, 2-3, 132-151 (2006)
[46] Kuo, R. J.; Hong, S. Y.; Huang, Y. C., Integration of particle swarm optimization-based fuzzy neural network and artificial neural network for supplier selection, Appl. Math. Model., 34, 3976-3990 (2010) · Zbl 1201.90205
[47] Choy, K. L.; Lee, W. B.; Lo, V., Design of an intelligent supplier relationship management system: A hybrid case based neural network approach, Expert Syst. Appl., 24, 2, 225-237 (2003)
[48] Vokurka, R. J.; Choobineh, J.; Vadi, L., A prototype expert system for the evaluation and selection of potential suppliers, Int. J. Oper. Prod. Manage., 16, 12, 106-127 (1996)
[49] Choy, K. L.; Lee, W. B.; Lo, V., A knowledge-based supplier intelligence retrieval system for outsource manufacturing, Knowl.-Based Syst., 18, 1, 1-17 (2005)
[50] Ding, H.; Benyoucef, L.; Xie, X., A simulation optimization methodology for supplier selection problem, Int. J. Comput. Integ. Manuf., 18, 2-3, 210-224 (2005)
[51] Lee, C. C.; Yang, C. O., A neural networks approach for forecasting the supplier’s bid prices in supplier selection negotiation process, Expert Syst. Appl., 36, 2961-2970 (2009)
[52] Guo, X.; Yuan, Z.; Tian, B., Supplier selection based on hierarchical potential support vector machine, Expert Syst. Appl., 36, 6978-6985 (2009)
[53] Luo, X.; Wu, C.; Rosenberg, D.; Barnes, D., Supplier selection in agile supply chains: An information-processing model and an illustration, J. Purchas. Supply Manage., 15, 249-262 (2009)
[54] Choy, K. L.; Lee, W. B.; Lau, H. C.W.; Lu, D.; Lo, V., Design of an intelligent supplier relationship management system for new product development, Int. J. Comput. Integr. Manuf., 17, 8, 692-715 (2004)
[55] Haykin, S., Neural Networks - A comprehensive Foundation (1994), Macmillan College Publishing Company · Zbl 0828.68103
[56] White, H., Artificial Neural Networks: Approximation and Learning Theory, With A. R. Gallant (1992), Blackwell: Blackwell Cambridge and Oxford
[57] H. Poh, A Neural Network Approach for Marketing Strategies Research and Decision Support, Ph.D. Thesis, Stanford University, 1991.; H. Poh, A Neural Network Approach for Marketing Strategies Research and Decision Support, Ph.D. Thesis, Stanford University, 1991.
[58] Nelles, O., Nonlinear System Identification (2001), Springer Verlag: Springer Verlag Berlin
[59] Park, J. W.; Harley, R. G.; Venayagamoorthy, G. K., Indirect Adaptive Control for Synchronous Generator: Comparison of MLP/RBF Neural Networks Approach with Lyapunov Stability Analysis, IEEE Trans. Neural Netw., 15, 2, 460-464 (2004)
[60] Chen, K. Y.; Chen, L. S.; Chen, M. C.; Lee, C. L., Using SVM based method for equipment fault detection in a thermal power plant, Comput. Ind., 62, 42-50 (2011)
[61] Suykens, J. A.K.; Gestel, T. V.; Brabanter, J. D.; Vandewalle, J., Least Square Support Vector Machines (2002), World Scientific: World Scientific Singapore
[62] Deng, S.; Yeh, T. H., Applying least squares support vector machines to airframe wing-box structural design cost estimation, Expert Syst. Appl., 37, 12, 8417-8423 (2010)
[63] Vapnik, V. N., The Nature of Statistical Learning Theory (1999), Springer: Springer London · Zbl 0934.62009
[64] Smola, A. J.; Schölkopf, B., Learning with Kernels - Support Vector Machines, Regularization, Optimization, and Beyond (2002), MIT Press
[65] Chen, K. Y.; Wang, C. H., Support vector regression with genetic algorithms in forecasting tourism demand, Tourism Manage., 28, 1, 215-226 (2007)
[66] S.M. Mousavi, S.H. Iranmanesh, Least squares support vector machines with genetic algorithm for estimating costs in NPD projects, in: The IEEE International Conference on Industrial and Intelligent Information (ICIII 2011), Indonesia, pp. 127-131.; S.M. Mousavi, S.H. Iranmanesh, Least squares support vector machines with genetic algorithm for estimating costs in NPD projects, in: The IEEE International Conference on Industrial and Intelligent Information (ICIII 2011), Indonesia, pp. 127-131.
[67] Gholipour, A.; Araabi, B. N.; Lucas, C., Predicting chaotic time series using neural and neuro fuzzy models: a comparative study, Neural Process. Lett., 24, 217-239 (2006)
[68] Sadeghian, M.; Fatehi, A., Identification, prediction and detection of the process fault in a cement rotary kiln by locally linear neuro-fuzzy technique, J. Process. Control, 21, 2, 302-308 (2011)
[69] Safarzadeh, O.; Khaki-Sedigh, A.; Shirani, A. S., Identification and robust water level control of horizontal steam generators using quantitative feedback theory, Energy Conv. Manag., 52, 10, 3103-3111 (2011)
[70] Sharifie, J.; Lucas, C.; Araabi, B. N., Locally linear neurofuzzy modeling and prediction of geomagnetic disturbances based on solar wind conditions, Space Weather, 4, 1-12 (2006)
[71] Abdollahzade, M.; Mahjoob, M. J.; Zarringhalam, R.; Miranian, A., Locally linear neuro-fuzzy (llnf) electricity price forecasting in deregulated power markets, Int. J. Innov. Comput. Inf. Control, 6, 4203-4218 (2010)
[72] O. Nelles, Nonlinear System Identification with Local Linear Neuro-Fuzzy Models, Ph.D. Thesis, TU Darmstadt, Shaker Verlag, Aachen, Germany, 1999.; O. Nelles, Nonlinear System Identification with Local Linear Neuro-Fuzzy Models, Ph.D. Thesis, TU Darmstadt, Shaker Verlag, Aachen, Germany, 1999.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.