×

Homotopy perturbation method for thin film flow and heat transfer over an unsteady stretching sheet with internal heating and variable heat flux. (English) Zbl 1251.80002

Summary: We have analyzed the effects of variable heat flux and internal heat generation on the flow and heat transfer in a thin film on a horizontal sheet in the presence of thermal radiation. Similarity transformations are used to transform the governing equations to a set of coupled nonlinear ordinary differential equations. The obtained differential equations are solved approximately by the homotopy perturbation method (HPM). The effects of various parameters governing the flow and heat transfer in this study are discussed and presented graphically. Comparison of numerical results is made with the earlier results under limiting cases.

MSC:

80M25 Other numerical methods (thermodynamics) (MSC2010)
74K35 Thin films
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. J. Crane, “Flow past a stretching plate,” Zeitschrift für Angewandte Mathematik und Physik, vol. 21, no. 4, pp. 645-647, 1970. · doi:10.1007/BF01587695
[2] P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” Canadian Journal of Chemical Engineers, vol. 55, pp. 744-746, 1977.
[3] L. J. Grubka and K. M. Bobba, “Heat transfer characteristics of a continuous stretching surface with variable temperature,” Journal of Heat Transfer, vol. 107, no. 1, pp. 248-250, 1985.
[4] M. E. Ali, “Heat transfer characteristics of a continuous stretching surface,” Warme Stoffubertrag, vol. 29, no. 4, pp. 227-234, 1994. · doi:10.1007/BF01539754
[5] K. Vajravelu, “Convection heat transfer at a stretching sheet with suction or blowing,” Journal of Mathematical Analysis and Applications, vol. 188, no. 3, pp. 1002-1011, 1994. · Zbl 0816.76086 · doi:10.1006/jmaa.1994.1476
[6] I. Pop and T. Y. Na, “Unsteady flow past a stretching sheet,” Mechanics Research Communications, vol. 23, no. 4, pp. 413-422, 1996. · Zbl 0893.76017 · doi:10.1016/0093-6413(96)00040-7
[7] T. R. Mahapatra and A. S. Gupta, “Stagnation-point flow towards stretching surface,” Canadian Journal of Chemical Engineering, vol. 81, no. 2, pp. 258-263, 2003.
[8] C. Y. Wang, “Liquid film on an unsteady stretching surface,” Quarterly of Applied Mathematics, vol. 48, no. 4, pp. 601-610, 1990. · Zbl 0714.76036
[9] H. I. Andersson, J. B. Aarseth, N. Braud, and B. S. Dandapat, “Flow of a power-law fluid film on an unsteady stretching surface,” Journal of Non-Newtonian Fluid Mechanics, vol. 62, no. 1, pp. 1-8, 1996. · doi:10.1016/0377-0257(95)01392-X
[10] H. I. Andersson, J. B. Aarseth, and B. S. Dandapat, “Heat transfer in a liquid film on an unsteady stretching surface,” International Journal of Heat and Mass Transfer, vol. 43, no. 1, pp. 69-74, 2000. · Zbl 1042.76507 · doi:10.1016/S0017-9310(99)00123-4
[11] B. S. Dandapat, B. Santra, and H. I. Andersson, “Thermocapillarity in a liquid film on an unsteady stretching surface,” International Journal of Heat and Mass Transfer, vol. 46, no. 16, pp. 3009-3015, 2003. · Zbl 1048.76502 · doi:10.1016/S0017-9310(03)00078-4
[12] C. H. Chen, “Heat transfer in a power-law fluid film over a unsteady stretching sheet,” Heat and Mass Transfer, vol. 39, no. 8-9, pp. 791-796, 2003. · doi:10.1007/s00231-002-0363-2
[13] C. Wang, “Analytic solutions for a liquid film on an unsteady stretching surface,” Heat and Mass Transfer, vol. 42, no. 8, pp. 759-766, 2006. · doi:10.1007/s00231-005-0027-0
[14] C. Wang and I. Pop, “Analysis of the flow of a power-law fluid film on an unsteady stretching surface by means of homotopy analysis method,” Journal of Non-Newtonian Fluid Mechanics, vol. 138, no. 2-3, pp. 161-172, 2006. · Zbl 1195.76132 · doi:10.1016/j.jnnfm.2006.05.011
[15] B. S. Dandapat, B. Santra, and K. Vajravelu, “The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet,” International Journal of Heat and Mass Transfer, vol. 50, no. 5-6, pp. 991-996, 2007. · Zbl 1124.80317 · doi:10.1016/j.ijheatmasstransfer.2006.08.007
[16] M. A. A. Mahmoud and A. M. Megahed, “MHD flow and heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet with variable fluid properties,” Canadian Journal of Physics, vol. 87, no. 10, pp. 1065-1071, 2009. · doi:10.1139/P09-066
[17] N. F. M. Noor and I. Hashim, “Thermocapillarity and magnetic field effects in a thin liquid film on an unsteady stretching surface,” International Journal of Heat and Mass Transfer, vol. 53, no. 9-10, pp. 2044-2051, 2010. · Zbl 1190.80025 · doi:10.1016/j.ijheatmasstransfer.2009.12.052
[18] M. Abd El-Aziz, “Flow and heat transfer over an unsteady stretching surface with Hall effect,” Meccanica, vol. 45, no. 1, pp. 97-109, 2010. · Zbl 1184.76906 · doi:10.1007/s11012-009-9227-x
[19] R. C. Aziz, I. Hashim, and A. K. Alomari, “Thin film flow and heat transfer on an unsteady stretching sheet with internal heating,” Meccanica, vol. 46, no. 2, pp. 349-357, 2011. · Zbl 1271.76025 · doi:10.1007/s11012-010-9313-0
[20] A. M. Megahed, “HPM for the slip velocity effect on a liquid film over an unsteady stretching surface with variable heat flux,” European Physical Journal Plus, vol. 126, no. 9, article 82, 2011. · doi:10.1140/epjp/i2011-11082-0
[21] I.-C. Liu and A. M. Megahed, “Numerical study for the flow and heat transfer in a thin liquid film over an unsteady stretching sheet with variable fluid properties in the presence of thermal radiation,” Journal of Mechanics, vol. 28, pp. 559-565, 2012.
[22] A. Raptis, “Flow of a micropolar fluid past a continuously moving plate by the presence of radiation,” International Journal of Heat and Mass Transfer, vol. 41, no. 18, pp. 2865-2866, 1998. · Zbl 0922.76050 · doi:10.1016/S0017-9310(98)00006-4
[23] A. Raptis, “Radiation and viscoelastic flow,” International Communications in Heat and Mass Transfer, vol. 26, no. 6, pp. 889-895, 1999. · doi:10.1016/S0735-1933(99)00077-9
[24] B. S. Dandapat and G. C. Layek, “Spin coating in the presence of a transverse magnetic field and non-uniform rotation: a numerical study,” Journal of Physics D, vol. 32, no. 19, pp. 2483-2491, 1999. · doi:10.1088/0022-3727/32/19/304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.