×

A frequency localized maximum principle applied to the 2D quasi-geostrophic equation. (English) Zbl 1248.35211

Summary: In this paper, we prove a maximum principle for a frequency localized transport-diffusion equation. As an application, we prove the local well-posedness of the supercritical quasi-geostrophic equation in the critical Besov spaces \(\overset \circ {B}^{1-\alpha}_{\infty,q}\), and global well-posedness of the critical quasi-geostrophic equation in \({\overset \circ {B}^{0}_{\infty,q}}\) for all \(1 \leq q < \infty \). Here \({\overset \circ {B}^{s}_{\infty,q} }\) is the closure of the Schwartz functions in the norm of \({B^{s}_{\infty,q}}\).

MSC:

35Q86 PDEs in connection with geophysics
35Q35 PDEs in connection with fluid mechanics
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abidi H., Hmidi T.: On the global well-posedness of the critical quasi-geostrophic equation. SIAM J. Math. Anal. 40, 167–185 (2008) · Zbl 1157.76054 · doi:10.1137/070682319
[2] Bony J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981)
[3] Caffarelli L., Vasseur A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010) · Zbl 1204.35063 · doi:10.4007/annals.2010.171.1903
[4] Chae D., Lee J.: Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Commun. Math. Phys. 233, 297–311 (2003) · Zbl 1019.86002
[5] Chemin J.Y.: Perfect Incompressibe Fluids. Oxford University Press, New York (1998)
[6] Chemin, J.Y.: Localization in Fourier space and Navier-Stokes system. In: Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM Series, Pisa, pp. 53–136 · Zbl 1081.35074
[7] Chen Q., Miao C., Zhang Z.: A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys. 271, 821–838 (2007) · Zbl 1142.35069 · doi:10.1007/s00220-007-0193-7
[8] Constantin P., Córdoba D., Wu J.: On the critical dissipative quasi-geostrophic thermal active scalar. Indiana Univ. Math. J. 50, 97–107 (2001) · Zbl 0989.86004
[9] Constantin P., Majda A., Tabak E.: Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994) · Zbl 0809.35057 · doi:10.1088/0951-7715/7/6/001
[10] Constantin P., Wu J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999) · Zbl 0957.76093 · doi:10.1137/S0036141098337333
[11] Constantin P., Wu J.: Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. Annal. L’Inst. H. Poincaré Analyse non Linéaire 25, 1103–1110 (2008) · Zbl 1149.76052 · doi:10.1016/j.anihpc.2007.10.001
[12] Córdoba D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. of Math. 148, 1135–1152 (1998) · Zbl 0920.35109 · doi:10.2307/121037
[13] Córdoba D., Fefferman C.: Growth of solutions for QG and 2D Euler equations. J. Amer. Math. Soc. 15, 665–670 (2002) · Zbl 1013.76011 · doi:10.1090/S0894-0347-02-00394-6
[14] Córdoba A., Córdoba D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 511–528 (2004) · Zbl 1309.76026
[15] Danchin, R.: Fourier analysis methods for PDEs, http://perso-math.univ-mlv.fr/users/danchin.raphael/courschine.pdf , 2005 · Zbl 1125.76061
[16] Hmidi T., Keraani S.: Global solutions of the super-critical 2D Q-G equation in Besov spaces. Adv. in Math. 214, 618–638 (2007) · Zbl 1119.76070 · doi:10.1016/j.aim.2007.02.013
[17] Ju N.: Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Commun. Math. Phys. 251, 365–376 (2004) · Zbl 1106.35061 · doi:10.1007/s00220-004-1062-2
[18] Kiselev A., Nazarov F., Volberg A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007) · Zbl 1121.35115 · doi:10.1007/s00222-006-0020-3
[19] Pedlosky J.: Geophysical Fluid Dynamics. Springer, New York (1987) · Zbl 0713.76005
[20] Stein E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ Press, Princeton, NJ (1993) · Zbl 0821.42001
[21] Triebel, H.: Theory of Function Spaces. Monograph in Mathematics, Vol. 78, Basel: Birkhauser Verlag, 1983 · Zbl 0546.46028
[22] Wu J.: Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces. SIAM J. Math. Anal. 36, 1014–1030 (2004) · Zbl 1083.76064 · doi:10.1137/S0036141003435576
[23] Wu J.: The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation. Nonlinearity 18, 139–154 (2005) · Zbl 1067.35002 · doi:10.1088/0951-7715/18/1/008
[24] Zhang P., Zhang Z.: On the local well-posedness for the dumbbell model of polymeric fluids. J. Part. Diff. Eqs. 21, 234–252 (2008) · Zbl 1174.82014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.