×

Isoperimetric inequality from the Poisson equation via curvature. (English) Zbl 1247.53045

It is well known that the isoperimetric inequality in \({\mathbb{R}}^n\) is a consequence of the Sobolev embedding \(W_0^{1,1}\rightarrow L^{\frac{n}{n-1}}\). Another way to derive the isoperimetric inequality in \(\mathbb R^n\) is to look at solutions of the Poisson equation \(\Delta u=g\) and to use the inequality \(\| Du\|_{L^\infty\left(B\right)}\leq c\| g\|_{L^{n,1}\left(2B\right)}\). (This argument, which does not seem to appear in the literature, is given in the introduction of the paper under review.)
In the paper under review an isoperimetric inequality for metric measure spaces satisfying a local \(L^2\)-Poincaré inequality is proved under suitable assumptions. The setting is that of a complete, path-connected metric space \(\left(X,d\right)\) with a \(Q\)-regular measure \(\mu\) (which means roughly that volume of balls grows like \(R^Q\)) and which satisfies a quantitative local \(L^2\)-Poincaré-inequality. The Sobolev space \(H^{1,2}\left(X\right)\) is the completion of the space of locally Lipschitz functions for the \(H^{1,2}\)-norm. For functions \(u\in H^{1,2}_{loc}\left(x\right)\) one has the Cheeger derivative \(Du\) and one can use this to define what a solution of the Cheeger-Poisson equation \(\Delta u=g\) is. The assumption made in the paper under review is that solutions to the Cheeger-Poisson equation satisfy the inequality \[ \|| Du|\|_{L^\infty\left(B\right)}\leq C\left(R^{-1}\int_{2B}| u|^2 d\mu\right)^{\frac{1}{2}}+\| g\|_{L^{Q,1}\left(2B\right)} \] for \(B=B\left(x,r\right)\) with \(2r<R\).
Under these assumptions the authors prove that a local \(L^2\)-Poincaré inequality implies an isoperimetric inequality \[ \mu\left(E\right)^{\frac{Q-1}{Q}}\leq CP\left(E,X\right) \] for bounded Borel sets \(E\subset X\), where \(P\left(E,X\right)\) denotes the perimeter of \(E\) in \(X\). As a corollary they obtain the local Sobolev inequality \[ \| \phi\|_{L^{\frac{Q}{Q-1}}\left(X\right)}\leq C\|| D\phi|\|_{L^1\left(X\right)} \] for Lipschitz functions \(\phi\) supported in a ball of given radius.
The assumptions made in the paper under review are in particular satisfied for Riemannian manifolds of nonnegative Ricci curvature, maximal volume growth and dimension \(\geq3\). There is a generalized notion of lower Ricci curvature bounds for metric measure spaces due to Lott-Villani and Sturm. It follows from results of Lott-Villani, von Renesse and Rajala that this curvature bound implies local \(L^1\)-Poincaré-inequalities, hence the results of the paper under review can be applied in this setting.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
54E35 Metric spaces, metrizability
49J52 Nonsmooth analysis
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math 159 (1) pp 51– (2001) · Zbl 1002.28004 · doi:10.1006/aima.2000.1963
[2] Ambrosio, Currents in metric spaces, Acta Mat 185 (1) pp 1– (2000) · Zbl 0984.49025 · doi:10.1007/BF02392711
[3] Bakry, New Trends in Stochastic Analysis (Charingworth, 1994) pp 43– (1997)
[4] Bakry, Lecture Notes in Mathematics, 1123, in: Séminaire de probabilités, XIX, 1983/8 pp 177– (1985) · doi:10.1007/BFb0075847
[5] Biroli, A Saint-Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. (4) 169 pp 125– (1995) · Zbl 0851.31008 · doi:10.1007/BF01759352
[6] Björn, EMS Tracts in Mathematics, 17, in: Nonlinear potential theory on metric space (2011) · Zbl 1231.31001 · doi:10.4171/099
[7] Cabré, Elliptic PDE’s in probability and geometry: symmetry and regularity of solutions, Discrete Contin. Dyn. Syst 20 (3) pp 425– (2008) · Zbl 1158.35033 · doi:10.3934/dcds.2008.20.425
[8] Caffarelli, Gradient estimates for variable coefficient parabolic equations and singular perturbation problems, Amer. J. Math 120 (2) pp 391– (1998) · Zbl 0907.35026 · doi:10.1353/ajm.1998.0009
[9] Capogna, An isoperimetric inequality and the geometric Sobolev embedding for vector fields, Math. Res. Lett 1 (2) pp 263– (1994) · Zbl 0861.46019 · doi:10.4310/MRL.1994.v1.n2.a14
[10] Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal 9 (3) pp 428– (1999) · Zbl 0942.58018 · doi:10.1007/s000390050094
[11] Cheeger, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom 46 (3) pp 406– (1997) · Zbl 0902.53034 · doi:10.4310/jdg/1214459974
[12] Cheeger, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom 54 (1) pp 13– (2000) · Zbl 1027.53042 · doi:10.4310/jdg/1214342145
[13] Cheeger, On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom 54 (1) pp 37– (2000) · Zbl 1027.53043 · doi:10.4310/jdg/1214342146
[14] Cheng, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math 28 (3) pp 333– (1975) · Zbl 0312.53031 · doi:10.1002/cpa.3160280303
[15] Cianchi, Maximizing the L norm of the gradient of solutions to the Poisson equation, J. Geom. Anal 2 (6) pp 499– (1992) · Zbl 0780.35009 · doi:10.1007/BF02921575
[16] Evans, Studies in Advanced Mathematics, in: Measure theory and fine properties of function (1992) · Zbl 0804.28001
[17] Federer, Norman and integral currents, Ann. of Math. (2) 72 pp 458– (1960) · Zbl 0187.31301 · doi:10.2307/1970227
[18] Garofalo, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math 49 (10) pp 1081– (1996) · Zbl 0880.35032 · doi:10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
[19] Gilbarg, Classics in Mathematics, in: Elliptic partial differential equations of second orde (2001) · Zbl 1042.35002
[20] Gross, Logarithmic Sobolev inequalities, Amer. J. Math 97 (4) pp 1061– (1975) · Zbl 0318.46049 · doi:10.2307/2373688
[21] Gross, Hypercontractivity over complex manifolds, Acta Math 182 (2) pp 159– (1999) · Zbl 0983.47026 · doi:10.1007/BF02392573
[22] Hajłasz, Sobolev met Poincaré, Mem. Amer. Math. Soc 145 (2000)
[23] Heinonen, Unabridged republication of the 1993 original, in: Nonlinear potential theory of degenerate elliptic equation (2006)
[24] Heinonen, Quasiconformal maps in metric spaces with controlled geometry, Acta Math 181 (1) pp 1– (1998) · Zbl 0915.30018 · doi:10.1007/BF02392747
[25] Herron, Uniform, Sobolev extension and quasiconformal circle domains, J. Anal. Math 57 pp 172– (1991) · Zbl 0776.30014 · doi:10.1007/BF03041069
[26] Jiang, Gradient estimate for solutions to Poisson equations in metric measure spaces, J. Funct. Anal 261 (12) pp 3549– (2011) · Zbl 1255.58008 · doi:10.1016/j.jfa.2011.08.011
[27] Jiang, Lipschitz continuity of solutions of Poisson equations in metric measure spaces, Potential Anal.
[28] Keith, Modulus and the Poincaré inequality on metric measure spaces, Math. Z 245 (2) pp 255– (2003) · Zbl 1037.31009 · doi:10.1007/s00209-003-0542-y
[29] Keith, The Poincaré inequality is an open ended condition, Ann. of Math. (2) 167 (2) pp 575– (2008) · Zbl 1180.46025 · doi:10.4007/annals.2008.167.575
[30] Kilpeläinen, Sobolev spaces with zero boundary values on metric spaces, Potential Anal 12 (3) pp 233– (2000) · Zbl 0962.46021 · doi:10.1023/A:1008601220456
[31] Koskela, Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces, J. Funct. Anal 202 (1) pp 147– (2003) · Zbl 1027.31006 · doi:10.1016/S0022-1236(02)00090-3
[32] Li, Advanced Lectures in Mathematics (ALM), 7, in: Handbook of geometric analysis, No. 1 pp 195– (2008)
[33] Li, On the parabolic kernel of the Schrödinger operator, Acta Math 156 pp 153– (1986) · Zbl 0611.58045 · doi:10.1007/BF02399203
[34] Lott, Weak curvature conditions and functional inequalities, J. Funct. Anal 245 (1) pp 311– (2007) · Zbl 1119.53028 · doi:10.1016/j.jfa.2006.10.018
[35] Lott, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (3) pp 903– (2009) · Zbl 1178.53038 · doi:10.4007/annals.2009.169.903
[36] Maz’ya, Classes of regions and imbedding theorems for function spaces, Dokl. Akad. Nauk. SSSR 133 pp 527– (1960)
[37] Miranda, Functions of bounded variation on ”good” metric spaces, J. Math. Pures Appl. (9) 82 (8) pp 975– (2003) · Zbl 1109.46030 · doi:10.1016/S0021-7824(03)00036-9
[38] Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equation
[39] Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamerican 16 (2) pp 243– (2000) · Zbl 0974.46038 · doi:10.4171/RMI/275
[40] Sturm, Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties, J. Reine Angew. Math 456 pp 173– (1994) · Zbl 0806.53041
[41] Sturm, Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9) 75 (3) pp 273– (1996) · Zbl 0854.35016
[42] Sturm, On the geometry of metric measure spaces. I, Acta Math 196 (1) pp 65– (2006) · Zbl 1105.53035 · doi:10.1007/s11511-006-0002-8
[43] Sturm, On the geometry of metric measure spaces. II, Acta Math 196 (1) pp 133– (2006) · Zbl 1106.53032 · doi:10.1007/s11511-006-0003-7
[44] von Renesse, On local Poincaré via transportation, Math. Z 259 (1) pp 21– (2008) · Zbl 1141.53076 · doi:10.1007/s00209-007-0206-4
[45] Wong, Refined gradient bounds, Poisson equations and some applications to open Kähler manifolds, Asian J. Math 7 (3) pp 337– (2003) · Zbl 1110.53057 · doi:10.4310/AJM.2003.v7.n3.a4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.