×

Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods. (English) Zbl 1244.93148

Summary: In this paper, we consider the Input-to-State Stability (ISS) of impulsive control systems with and without time delays. We prove that, if the time-delay system possesses an exponential Lyapunov–Razumikhin function or an exponential Lyapunov–Krasovskii functional, then the system is uniformly ISS provided that the average dwell-time condition is satisfied. Then, we consider large-scale networks of impulsive systems with and without time delays and prove that the whole network is uniformly ISS under the small-gain and the average dwell-time condition. Moreover, these theorems provide us with tools to construct a Lyapunov function (for time-delay systems, a Lyapunov–Krasovskii functional or a Lyapunov–Razumikhin function) and the corresponding gains of the whole system, using the Lyapunov functions of the subsystems and the internal gains, which are linear and satisfy the small-gain condition. We illustrate the application of the main results on examples.

MSC:

93D25 Input-output approaches in control theory
93A15 Large-scale systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Haddad, W. M.; Chellaboina, V. S.; Nersesov, S. G., Impulsive and Hybrid Dynamical Systems, Princeton Series in Applied Mathematics (2006), Princeton University Press: Princeton University Press Princeton, NJ
[2] Shorten, R.; Wirth, F.; Mason, O.; Wulff, K.; King, C., Stability criteria for switched and hybrid systems, SIAM Rev., 49, 4, 545-592 (2007) · Zbl 1127.93005
[3] Sontag, E. D., Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, 34, 4, 435-443 (1989) · Zbl 0682.93045
[4] Sontag, E. D.; Wang, Y., On characterizations of the input-to-state stability property, Systems Control Lett., 24, 5, 351-359 (1995) · Zbl 0877.93121
[5] Grüne, L., Input-to-state dynamical stability and its Lyapunov function characterization, IEEE Trans. Automat. Control, 47, 9, 1499-1504 (2002) · Zbl 1364.93567
[6] Sontag, E. D.; Wang, Y., New characterizations of input-to-state stability, IEEE Trans. Automat. Control, 41, 9, 1283-1294 (1996) · Zbl 0862.93051
[7] Dashkovskiy, S. N.; Rüffer, B. S., Local ISS of large-scale interconnections and estimates for stability regions, Systems Control Lett., 59, 3-4, 241-247 (2010) · Zbl 1222.93206
[8] Sontag, E. D., Comments on integral variants of ISS, Systems Control Lett., 34, 1-2, 93-100 (1998) · Zbl 0902.93062
[9] Cai, C.; Teel, A., Characterizations of input-to-state stability for hybrid systems, Systems Control Lett., 58, 1, 47-53 (2009) · Zbl 1154.93037
[10] Teel, A. R., Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem, IEEE Trans. Automat. Control, 43, 7, 960-964 (1998) · Zbl 0952.93121
[11] Pepe, P.; Jiang, Z.-P., A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems, Systems Control Lett., 55, 12, 1006-1014 (2006) · Zbl 1120.93361
[12] Hespanha, J. P.; Liberzon, D.; Teel, A. R., Lyapunov conditions for input-to-state stability of impulsive systems, Automatica J. IFAC, 44, 11, 2735-2744 (2008) · Zbl 1152.93050
[13] Chen, W.-H.; Zheng, W. X., Brief paper: input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays, Automatica J. IFAC, 45, 6, 1481-1488 (2009) · Zbl 1166.93370
[14] Hespanha, J. P.; Morse, A. S., Stabilization of nonholonomic integrators via logic-based switching, Automatica J. IFAC, 35, 3, 385-393 (1999) · Zbl 0931.93055
[15] Jiang, Z.-P.; Teel, A. R.; Praly, L., Small-gain theorem for ISS systems and applications, Math. Control Signals Syst., 7, 2, 95-120 (1994) · Zbl 0836.93054
[16] Dashkovskiy, S.; Rüffer, B. S.; Wirth, F. R., An ISS small gain theorem for general networks, Math. Control Signals Syst., 19, 2, 93-122 (2007) · Zbl 1125.93062
[17] Jiang, Z.-P.; Mareels, I. M.Y.; Wang, Y., A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica J. IFAC, 32, 8, 1211-1215 (1996) · Zbl 0857.93089
[18] Dashkovskiy, S. N.; Rüffer, B. S.; Wirth, F. R., Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM J. Control Optim., 48, 6, 4089-4118 (2010) · Zbl 1202.93008
[19] D. Nesic, A. Teel, A Lyapunov-based small-gain theorem for hybrid ISS systems, in: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, Dec. 9-11, 2008, pp. 3380-3385.; D. Nesic, A. Teel, A Lyapunov-based small-gain theorem for hybrid ISS systems, in: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, Dec. 9-11, 2008, pp. 3380-3385.
[20] S. Dashkovskiy, M. Kosmykov, Stability of networks of hybrid ISS systems, in: Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, Dec. 16-18, 2009, pp. 3870-3875.; S. Dashkovskiy, M. Kosmykov, Stability of networks of hybrid ISS systems, in: Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, Dec. 16-18, 2009, pp. 3870-3875.
[21] S. Dashkovskiy, A. Mironchenko, Local ISS of reaction-diffusion systems, in: Proceedings of the 18th IFAC World Congress, 28.08.-02.09., Milan, Italy, 2011, pp. 11018-11023.; S. Dashkovskiy, A. Mironchenko, Local ISS of reaction-diffusion systems, in: Proceedings of the 18th IFAC World Congress, 28.08.-02.09., Milan, Italy, 2011, pp. 11018-11023.
[22] S. Dashkovskiy, L. Naujok, Lyapunov-Razumikhin and Lyapunov-Krasovskii theorems for interconnected ISS time-delay systems, in: Proceedings of the 19th MTNS, Budapest, Hungary, July 5-9, 2010, pp. 1179-1184.; S. Dashkovskiy, L. Naujok, Lyapunov-Razumikhin and Lyapunov-Krasovskii theorems for interconnected ISS time-delay systems, in: Proceedings of the 19th MTNS, Budapest, Hungary, July 5-9, 2010, pp. 1179-1184.
[23] Karafyllis, I.; Jiang, Z.-P., A vector small-gain theorem for general non-linear control systems, IMA J. Math. Control Inform., 28, 309-344 (2011) · Zbl 1228.93108
[24] Evans, L. C., (Partial Differential Equations. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19 (1998), American Mathematical Society) · Zbl 0902.35002
[25] Ballinger, G.; Liu, X., Existence and uniqueness results for impulsive delay differential equations, Dyn. Contin. Discrete Impuls. Syst., 5, 1-4, 579-591 (1999), differential equations and dynamical systems (Waterloo, ON, 1997 · Zbl 0955.34068
[26] Hinrichsen, D.; Pritchard, A. J., Mathematical Syst. Theory. I, Texts in Applied Mathematics, vol. 48 (2005), Springer-Verlag: Springer-Verlag Berlin, modelling, state space analysis, stability and robustness
[27] Shen, J.; Luo, Z.; Liu, X., Impulsive stabilization of functional differential equations via Liapunov functionals, J. Math. Anal. Appl., 240, 1-5, 1-15 (1999) · Zbl 0955.34069
[28] Hale, J. K.; Verduyn Lunel, S. M., (Introduction to Functional-Differential Equations. Introduction to Functional-Differential Equations, Applied Mathematical Sciences, vol. 99 (1993), Springer-Verlag: Springer-Verlag New York) · Zbl 0787.34002
[29] S. Tiwari, Y. Wang, Z.-P. Jiang, A nonlinear small-gain theorem for large-scale time delay systems, in: Proceedings of the 48th IEEE CDC, Shanghai, China, Dec. 16-18, 2009, pp. 7204-7209.; S. Tiwari, Y. Wang, Z.-P. Jiang, A nonlinear small-gain theorem for large-scale time delay systems, in: Proceedings of the 48th IEEE CDC, Shanghai, China, Dec. 16-18, 2009, pp. 7204-7209.
[30] S. Tiwari, Y. Wang, Razumikhin-type small-gain theorems for large-scale systems with delay, in: Proceedings of the 49th IEEE CDC, Atlanta, GA, USA, Dec. 15-17, 2010, pp. 7407-7412.; S. Tiwari, Y. Wang, Razumikhin-type small-gain theorems for large-scale systems with delay, in: Proceedings of the 49th IEEE CDC, Atlanta, GA, USA, Dec. 15-17, 2010, pp. 7407-7412.
[31] S. Dashkovskiy, B.S. Rüffer, F.R. Wirth, An ISS Lyapunov function for networks of ISS systems, in: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, MTNS, Kyoto, Japan, July 24-28, 2006, pp. 77-82.; S. Dashkovskiy, B.S. Rüffer, F.R. Wirth, An ISS Lyapunov function for networks of ISS systems, in: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, MTNS, Kyoto, Japan, July 24-28, 2006, pp. 77-82.
[32] B. Rüffer, Monotone dynamical systems, graphs, and stability of large-scale interconnected systems, Ph.D. Thesis, Fachbereich 3 (Mathematik & Informatik) der Universität Bremen, 2007.; B. Rüffer, Monotone dynamical systems, graphs, and stability of large-scale interconnected systems, Ph.D. Thesis, Fachbereich 3 (Mathematik & Informatik) der Universität Bremen, 2007.
[33] Walsh, G. C.; Ye, H.; Bushnell, L. G.; Nilsson, J.; Bernhardsson, B., Stability analysis of networked control systems, Automatica, 34, 57-64 (1999)
[34] Nesic, D.; Teel, A., Input-to-state stability of networked control systems, Automatica, 40, 12, 2121-2128 (2004) · Zbl 1077.93049
[35] Hespanha, J.; Naghshtabrizi, P.; Xu, Y., A survey of recent results in networked control systems, Proc. IEEE, 95, 1, 138-162 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.