×

Delayed feedback on the 3-D chaotic system only with two stable node-foci. (English) Zbl 1238.34122

Summary: We investigate the effect of delayed feedbacks on the 3-D chaotic system only with two stable node-foci by Q. Yang, Zh. Wei and G. Chen [Int. J. Bifurcation Chaos Appl. Sci. Eng. 20, No. 4, 1061–1083 (2010; Zbl 1193.34091)]. The stability of equilibria and the existence of Hopf bifurcations are considered. The explicit formulas determining the direction, stability and period of the bifurcating periodic solutions are obtained by employing the normal form theory and the center manifold theorem. Numerical simulations and experimental results are given to verify the theoretical analysis. Hopf bifurcation analysis can explain and predict the periodic orbit in the chaotic system with direct time delay feedback. We also find that the control law can be applied to the chaotic system only with two stable node-foci for the purpose of control and anti-control of chaos. Finally, some numerical simulations are given to illustrate the effectiveness of the results found.

MSC:

34H10 Chaos control for problems involving ordinary differential equations
34K35 Control problems for functional-differential equations
93B52 Feedback control
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

Citations:

Zbl 1193.34091
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lorenz, E. N., Deterministic non-periodic flow, J. Atmospheric Sci., 20, 130-141 (1963) · Zbl 1417.37129
[2] Sprott, J. C., Some simple chaotic flows, Phys. Rev. E, 50, 647-650 (1994)
[3] Sprott, J. C., A new class of chaotic circuit, Phys. Lett. A, 266, 19-23 (2000)
[4] Sprott, J. C., Simplest dissipative chaotic flow, Phys. Lett. A, 228, 271-274 (1997) · Zbl 1043.37504
[5] Chen, G. R.; Ueta, T., Yet another chaotic attractor, Internat. J. Bifur. Chaos, 9, 1465-1466 (1999) · Zbl 0962.37013
[6] Lü, J. H.; Chen, G. R., A new chaotic attractor conined, Internat. J. Bifur. Chaos, 12, 659-661 (2002) · Zbl 1063.34510
[7] Yang, Q. G.; Chen, G. R.; Huang, K. F., Chaotic attractors of the conjugate Lorenz-type system, Internat. J. Bifur. Chaos, 17, 3929-3949 (2007) · Zbl 1149.37308
[8] van der Schrier, G.; Maas, L. R.M., The diffusionless Lorenz equations: S˘ilnikov bifurcations and reduction to an explicit map, Physica D, 141, 19-36 (2000) · Zbl 0956.37038
[9] Shaw, R., Strange attractor, chaotic behaviour and information flow, Z. Naturforsch. A, 36, 80-112 (1981) · Zbl 0599.58033
[10] Yang, Q. G.; Chen, G. R., A chaotic system with one saddle and two stable node-foci, Internat. J. Bifur. Chaos, 18, 1393-1414 (2008) · Zbl 1147.34306
[11] Sparrow, C., The Lorenz Equations: Bifurcation, Chaos, and Strange Attractor (1982), Springer-Verlag: Springer-Verlag New York
[12] Zhou, T. S.; Chen, G. R.; Tang, Y., Complex dynamical behaviors of the chaotic Chen’s system, Internat. J. Bifur. Chaos, 13, 2561-2574 (2003) · Zbl 1046.37018
[13] Yang, Q. G.; Chen, G. R.; Zhou, T. S., A unified Lorenz-type system and its canonical form, Internat. J. Bifur. Chaos, 16, 2855-2871 (2006) · Zbl 1185.37088
[14] Kokubu, H.; Roussarie, R., Existence of a singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences: part \(1^∗\), J. Difference Equ. Appl., 16, 513-557 (2004) · Zbl 1061.34036
[15] Messias, M., Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system, J. Phys. A: Math. Theor., 42, 115101 (2009) · Zbl 1181.37019
[16] Mello, L. F.; Coelho, S. F., Degenerate Hopf bifurcations in the Lü system, Phys. Lett. A, 373, 1116-1120 (2009) · Zbl 1228.70014
[17] Li, J.; Zhang, J., New treatment on bifurcation of periodic solutions and homoclinic orbits at high \(r\) in the Lorenz equations, SIAM J. Appl. Math., 53, 1059-1071 (1993) · Zbl 0781.34031
[18] Huang, D., Periodic orbits and homoclinic orbits of the diffusionless Lorenz equations, Phys. Lett. A, 309, 248-253 (2003) · Zbl 1009.37010
[19] Wei, Z. C.; Yang, Q. G., Controlling the diffusionless Lorenz equations with periodic parametric perturbation, Comput. Math. Appl., 58, 1979-1987 (2009) · Zbl 1189.34118
[20] Pehlivan, I.; Uyaroglu, Y., A new chaotic attractor from general Lorenz system family and its electronic experimental implementation, Turk. J. Electr. Eng. Comput. Sci., 18, 171-184 (2010)
[21] Wang, Z., Existence of attractor and control of a 3D differential system, Nonlinear Dynam., 60, 369-373 (2009) · Zbl 1189.70103
[22] Yang, Q. G.; Wei, Z. C.; Chen, G. R., A unusual 3D autonomous quadratic chaotic system with two stable node-foci, Internat. J. Bifur. Chaos, 20, 1061-1083 (2010) · Zbl 1193.34091
[23] Wei, Z. C.; Yang, Q. G., Dynamical analysis of a new autonomous 3D chaotic system only with stable equilibria, Nonlinear Anal. RWA, 12, 106-118 (2011) · Zbl 1213.37061
[24] Wei, Z. C.; Yang, Q. G., Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci, Appl. Math. Comput., 217, 422-429 (2010) · Zbl 1200.65102
[25] Shu, Y.; Tan, P.; Li, C., Control of \(n\)-dimensional continuous-time system with delay, Phys. Lett. A, 323, 251-259 (2004) · Zbl 1118.81440
[26] Starkov, K. E.; Starkov, K. K., Localization of periodic orbits of the Rössler system under variation of its parameters, Chaos Solitons Fractals, 33, 1445-1449 (2007) · Zbl 1136.34310
[27] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys. Rev. Lett., 64, 1196-1199 (1990) · Zbl 0964.37501
[28] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170, 421-428 (1992)
[29] Pyragas, K., Experimental control of chaos by delayed self-controlling feedback, Phys. Lett. A, 180, 99-102 (1993)
[30] Strunk, W.; White, E. B., The Elements of Style (1979), Macmillan: Macmillan New York
[31] Hale, J., Theory of Functional Differential Equations (1977), Springer: Springer New York
[32] Hassard, B.; Kazarinoff, N.; Wan, Y., Theory and Applications of Hopf Bifurcation (1981), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0474.34002
[33] Song, Y.; Wei, J., Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos, Chaos Solitons Fractals, 22, 75-91 (2004) · Zbl 1112.37303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.