×

The MAC method. (English) Zbl 1237.76128

Summary: In this article, recent advances in the Marker and Cell (MAC) method will be reviewed. The MAC technique dates back to the early 1960s at the Los Alamos Laboratories and this article starts with a historical review, and then a brief discussion of related techniques. Improvements since the early days of MAC (and the Simplified MAC-SMAC) include automatic time-stepping, the use of the conjugate gradient method to solve the Poisson equation for the corrected velocity potential, greater efficiency through stripping out the virtual particles (markers) other than those near the free surface, and more accurate approximations of the free surface boundary conditions, the addition of bounded high accuracy upwinding for the convected terms (thereby being able to solve higher Reynolds number flows), and a (dynamics) flow visualization facility. More recently, effective techniques for surface and interfacial flows and, in particular, for accurately tracking the associated surface(s)/interface(s) including moving contact angles have been developed. This article will concentrate principally on a three-dimensional version of the SMAC method. It will eschew both code verification and model validation; instead it will emphasize the applications that the MAC method can solve, from multiphase flows to rheology.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics

Software:

SOLA; GENSMAC3D; GENSMAC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amsden A, Harlow F. The SMAC method: a numerical technique for calculating incompressible fluid flows. Technical Report LA-4370, Los Alamos National Laboratory, 1970.; Amsden A, Harlow F. The SMAC method: a numerical technique for calculating incompressible fluid flows. Technical Report LA-4370, Los Alamos National Laboratory, 1970. · Zbl 0206.55002
[2] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., A geometrical area-preserving volume-of-fluid advection method, J Comput Phys, 192, 355-364 (2003) · Zbl 1032.76632
[3] Aulisa, E.; Manservisi, S.; Scardovelli, R., A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking, J Comput Phys, 197, 555-584 (2004) · Zbl 1079.76605
[4] Baker, G. R.; Moore, D. W., The rise and distortion of a two-dimensional gas bubble in an inviscid liquid, Phys Fluids A, 9, 1451-1459 (1989) · Zbl 0697.76117
[5] Bird, R. B.; Armstrong, R. C.; Hassager, O., Dynamics of polymeric liquids, Fluid mechanics, vol. I (1967), John Wiley & Sons: John Wiley & Sons New York
[6] Boulton-Stone, J. M.; Blake, J. R., Gas bubbles bursting at a free surface, J Fluid Mech, 254, 437-466 (1993) · Zbl 0780.76011
[7] Brackbill, J. U.; Ruppel, H. M., FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions, J Comput Phys, 65, 314-343 (1986) · Zbl 0592.76090
[8] Brackbill, J. U., The ringing instability in particle-in-cell calculations of low-speed flow, J Comput Phys, 75, 469-492 (1988) · Zbl 0638.76068
[9] Brackbill, J. U., FLIP MHD: a particle-in-cell method for magnetohydrodynamics, J Comput Phys, 96, 163-192 (1991) · Zbl 0726.76078
[10] Butler TD, O’Rourke PJ. A numerical method for two-dimensional unsteady reacting flows. In: Sixteenth international symposium on combustion. 1976. p. 1503-15.; Butler TD, O’Rourke PJ. A numerical method for two-dimensional unsteady reacting flows. In: Sixteenth international symposium on combustion. 1976. p. 1503-15.
[11] Castelo, A.; Tomé, M. F.; Cesar, C. N.L.; McKee, S.; Cuminato, J. A., Freeflow-3D and integrated simulation system for three-dimensional free surface flows, J Comput Visual Sci, 2, 199-210 (2000) · Zbl 0979.76067
[12] Chenn, I.-L.; Glimm, J.; McBryan, O.; Plohr, B.; Yaniv, S., Front tracking for gas dynamics, J Comput Phys, 62, 83-110 (1986) · Zbl 0577.76068
[13] Craik, A. D.; Latham, R. C.; Fawkes, M. J.; Gribbon, W. F., The circular hydraulic jump, J Fluid Mech, 112, 347-362 (1981)
[14] Cross, M. M., Rheology of non-Newtonian fluids: a new flow equation for pseudo-plastic systems, J Coll Sci, 20, 417-437 (1965)
[15] Cruickshank, J. O.; Munson, B. R., Viscous-fluid buckling of plane and axisymmetric jets, J Fluid Mech, 113, 221-239 (1981)
[16] Cruickshank, J. O., Low-Reynolds-number instabilities in stagnating jet flows, J Fluid Mech, 193, 111-127 (1988)
[17] Darip, P.; Glimm, J.; Lindquist, B.; Maesumi, M.; McBryan, O., On the simulation of heterogeneous petroleum reservoirs, (Wheeler, M., Numerical simulation in oil recovery (1988), Springer Verlag: Springer Verlag New York)
[18] Deville, M. O., Numerical experiments on the MAC code for slow flow, J Comput Phys, 15, 362-374 (1974) · Zbl 0279.76023
[19] Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I., A hybrid particle level set method for improved interface capturing, J Comput Phys, 183, 83-116 (2002) · Zbl 1021.76044
[20] Ervin, E. A.; Tryggvason, G., The rise of bubbles in a vertical shear flow, J Fluid Eng Trans ASME, 119, 443-449 (1997)
[21] Evans MW, Harlow FH. The particle-in-cell method for hydrodynamic calculations. Los Alamos National Laboratory Report LA-2139, 1957.; Evans MW, Harlow FH. The particle-in-cell method for hydrodynamic calculations. Los Alamos National Laboratory Report LA-2139, 1957.
[22] Fauci, L. J.; Peskin, C. S., A computational model of aquatic animal locomotion, J Comput Phys, 77, 85-108 (1988) · Zbl 0641.76140
[23] Ferreira, V. G.; Tomé, M. F.; Mangiavacchi, N.; Castelo, A.; Cuminato, J. A.; Fortuna, A. O., High order upwinding and the hydraulic jump, Int J Numer Methods Fluids, 39, 549-583 (2002) · Zbl 1010.76068
[24] Ferreira, V. G.; Mangiavacchi, N.; Tomé, M. F.; Castelo, A.; Cuminato, J. A.; McKee, S., Numerical simulation of turbulent free surface flow with two-equation \(k- &z.epsiv;\) eddy-viscosity models, Int J Numer Methods Fluids, 44, 347-375 (2004) · Zbl 1085.76047
[25] Fogelson, A. L.; Peskin, C. S., A fast numerical method for solving the three-dimensional Stokes equations in the presence of gas suspended particles, J Comput Phys, 79, 50-69 (1988) · Zbl 0652.76025
[26] Galaktionov, O. S.; Anderson, P. D.; Peters, G. W.M.; Van de Vosse, F. N., An adaptive front tracking technique for three-dimensional transient flows, Int J Numer Methods Fluids, 32, 210-234 (2000) · Zbl 0966.76068
[27] Glimm, J.; Grove, J. W.; Lindquist, B.; McBryan, O.; Tryggvason, G., The bifurcation of tracked scalar waves, SIAM J Sci Comput, 9, 61-79 (1988) · Zbl 0636.65132
[28] Glimm, J.; Grove, J. W.; Li, X. L.; Shyue, K. M.; Zeng, Y. N.; Zhang, Q., Three-dimensional front tracking, SIAM J Sci Comput, 19, 703-727 (1998) · Zbl 0912.65075
[29] Glimm, J.; Grove, J. W.; Li, X. L.; Tan, D. C., Robust computational algorithms for dynamic interface tracking in three dimensions, SIAM J Sci Comput, 21, 2240-2256 (2000) · Zbl 0969.76062
[30] Glimm, J.; Grove, J. W.; Zhang, Q., Interface tracking for axisymmetric flows, SIAM J Sci Comput, 24, 208-236 (2002) · Zbl 1062.76034
[31] Glimm, J.; Li, X. L.; Liu, Y. J.; Xu, Z. L.; Zhao, N., Conservative front tracking with improved accuracy, SIAM J Sci Comput, 41, 1926-1947 (2003) · Zbl 1053.35093
[32] Golafshani, M., A simple numerical technique for transient creep flows with free surfaces, Int J Numer Methods Fluids, 8, 897-912 (1988)
[33] Greaves, D., A quadtree adaptive method for simulating fluid flows with moving interfaces, J Comput Phys, 194, 35-56 (2004) · Zbl 1136.76408
[34] Han, J.; Tryggvason, G., Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force, Phys Fluids, 11, 3650-3667 (1999) · Zbl 1149.76400
[35] Harlow, F., hydrodynamic problems involving large fluid distortion, J Assoc Comput Mach, 4, 137 (1957)
[36] Harlow, F.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys Fluids, 8, 2182-2189 (1965) · Zbl 1180.76043
[37] Harlow, F.; Nakayama, P. I., Turbulence transport equations, Phys Fluids, 10, 2323-2332 (1967) · Zbl 0209.29202
[38] Harlow F, Nakayama PI. Transport of turbulence energy decay rate. Los Alamos National Laboratory LA-3854, 1968.; Harlow F, Nakayama PI. Transport of turbulence energy decay rate. Los Alamos National Laboratory LA-3854, 1968.
[39] Harlow, F. H.; Welch, J. E., A fast ICE solution procedure for flows with largely invariant compressiblity, J Comput Phys, 40, 254-261 (1981)
[40] Hirsch C. Numerical computation of internal and external flows, vols. 1 and 2. Wiley series in numerical methods in engineering, 1988.; Hirsch C. Numerical computation of internal and external flows, vols. 1 and 2. Wiley series in numerical methods in engineering, 1988.
[41] Hirt, C. W.; Shannon, J. P., Free-surface stress conditions for incompressible-flow calculations, J Comput Phys, 2, 403-411 (1968) · Zbl 0197.25901
[42] Hirt CW, Nichols BD, Romero NC. SOLA-A numerical solution algorithm for transient fluid flows. Los Alamos National Laboratory LA-5852, 1972.; Hirt CW, Nichols BD, Romero NC. SOLA-A numerical solution algorithm for transient fluid flows. Los Alamos National Laboratory LA-5852, 1972.
[43] Hirt, C. W.; Nichols, B. D., Volume of Fluid (VOF) method for the dynamics of free boundaries, J Comput Phys, 39, 201-225 (1981) · Zbl 0462.76020
[44] Hirt, C. W., Flow3D users manual (1988), Flow Science Inc.
[45] Harvie, D. J.E.; Fletcher, D. F., A new volume of fluid advection algorithm: the defined donating region scheme, Int J Numer Methods Fluids, 35, 151-172 (2001) · Zbl 0991.76062
[46] Jaeger, M.; Carin, M., The front-tracking ALE method: application to a model of the freezing of cell suspensions, J Comput Phys, 179, 704-735 (2002) · Zbl 1130.76367
[47] Jamet, D.; Torres, D.; Brackbill, J. U., On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method, J Comput Phys, 182, 262-276 (2002) · Zbl 1058.76597
[48] Kim, M. S.; Lee, W. I., A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part I: New free surface-tracking algorithm and its verification, Int J Numer Methods Fluids, 42, 765-790 (2003) · Zbl 1143.76536
[49] Kim, M. S.; Park, J. S.; Lee, W. I., A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part II: application to the cavity filling and sloshing problems, Int J Numer Methods Fluids, 42, 791-812 (2003) · Zbl 1143.76537
[50] Kohno, H.; Tanahashi, T., Numerical analysis of moving interfaces using a level set method coupled with adaptive mesh refinement, Int J Numer Methods Fluids, 45, 921-944 (2004) · Zbl 1085.76056
[51] Lampe, J.; Dilalla, R.; Grimaldi, J.; Rothstein, J. P., Impact dynamics of drops on thin films of viscoelastic wormlike micelle solutions, J Non-Newton Fluid Mech, 125, 11-23 (2005)
[52] Lemos, C., Higher-order schemes for free surface flows with arbitrary configurations, Int J Numer Methods Fluids, 23, 545-566 (1996) · Zbl 0897.76063
[53] LeVeque, R. J., Numerical methods for conservation laws, Lectures in mathematics (1992), ETH: ETH Zurich · Zbl 0847.65053
[54] Li, J.; Renardy, Y. Y.; Renardy, M., Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method, Phys Fluids, 12, 269-282 (2000) · Zbl 1149.76454
[55] Lorstad, D.; Fuchs, L., High-order surface tension VOF-model for 3D bubble flows with high density ratio, J Comput Phys, 200, 153-176 (2004) · Zbl 1288.76083
[56] Lorstad, D.; Francois, M.; Shyy, W.; Fuchs, L., Assessment of volume of fluid and immersed boundary methods for droplet computations, Int J Numer Methods Fluids, 46, 109-125 (2004) · Zbl 1060.76618
[57] Mangiavacchi, N.; Castelo, A.; Tomé, M. F.; Cuminato, J. A.; Bambozzi de Oliveira, M. L.; McKee, S., An effective implementation of surface tension effects using the marker and cell methods for axisymmetric and planar flows, SIAM J Sci Comput, 26, 1340-1368 (2005) · Zbl 1149.76647
[58] Mäntylä, M., An introduction to solid modeling (1988), Computer Science Press: Computer Science Press Rockville
[59] Markham G, Proctor MV. Modifications to the two-dimensional incompressible fluid flow code ZUNI to provide enhanced performance. C.E.G.B. report TPRD/L/0063/M82, 1983.; Markham G, Proctor MV. Modifications to the two-dimensional incompressible fluid flow code ZUNI to provide enhanced performance. C.E.G.B. report TPRD/L/0063/M82, 1983.
[60] McQueen JF, Rutter P. Outline description of a recently implemented fluid flow code ZUNI. C.E.G.B. report LM/PHYS/258, 1981.; McQueen JF, Rutter P. Outline description of a recently implemented fluid flow code ZUNI. C.E.G.B. report LM/PHYS/258, 1981.
[61] Miyata, H.; Nishimura, S., Finite-difference simulation of nonlinear waves generated by ships of arbitrary three-dimensional configuration, J Comput Phys, 60, 391-436 (1985) · Zbl 0573.76027
[62] Miyata, H., Finite-difference simulation of breaking waves, J Comput Phys, 65, 179-214 (1986) · Zbl 0591.76024
[63] Moretti, G., Computation of flows with shocks, Annual Rev Fluid Mech, 19, 313-337 (1987)
[64] Nichols, B. D.; Hirt, C. W., Improved free surface boundary conditions for numerical incompressible flow calculations, J Comput Phys, 8, 434 (1971) · Zbl 0227.76048
[65] Nichols BD, Hirt CW, Hotchkins RS. SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries, Technical Report LA-8355, Los Alamos Scientific Laboratory, 1988.; Nichols BD, Hirt CW, Hotchkins RS. SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries, Technical Report LA-8355, Los Alamos Scientific Laboratory, 1988.
[66] Nourgaliev, P. R.; Dinh, T. N.; Theofanous, T. G., The characteristic-based matching (CBM) method for compressible flow with moving boundaries and interfaces, J Fluid Engng - Trans ASME, 126, 586-604 (2004)
[67] Oishi, C. M.; Ferreira, V. G.; Cuminato, J. A.; Castelo, A.; Tomé, M. F.; Mangiavacchi, N., Implementing implicit procedures in GENSMAC, TEMA (Tendências Mat Apl Comput), 5, 257-266 (2004) · Zbl 1208.76116
[68] Owens, R. G.; Phillips, T. N., Computational rheology (2002), Imperial College Press · Zbl 1015.76002
[69] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J Comput Phys, 79, 1-49 (1988) · Zbl 0659.65132
[70] Peskin, C. S., Numerical analysis of blood flow in the heart, J Comput Phys, 25, 220-252 (1977) · Zbl 0403.76100
[71] Popinet, S.; Zaleski, S., A front-tracking algorithm for accurate representation of surface tension, Int J Numer Methods Fluids, 30, 775-793 (1999) · Zbl 0940.76047
[72] Pracht, W. E., A Numerical method for calculating transient creeping flows, J Comput Phys, 7, 46-60 (1971) · Zbl 0218.76047
[73] Quecedo, M.; Pastor, M., Application of the level set method to the finite element solution of two-phases flows, Int J Numer Methods Eng, 50, 645-663 (2001) · Zbl 0989.76063
[74] Ramshaw JD, Dukowicz JK. APACHE: a generalized-mesh Eulerian computer code for multicomponent chemically reactive fluid flow. Los Alamos National Laboratory Report LA-7427, 1979.; Ramshaw JD, Dukowicz JK. APACHE: a generalized-mesh Eulerian computer code for multicomponent chemically reactive fluid flow. Los Alamos National Laboratory Report LA-7427, 1979.
[75] Rivard WC, Farmer OA, Butler TD. RICE: a computer program for multicomponent chemically reactive flows at all speeds. Los Alamos National Laboratory Report LA-5812, 1975.; Rivard WC, Farmer OA, Butler TD. RICE: a computer program for multicomponent chemically reactive flows at all speeds. Los Alamos National Laboratory Report LA-5812, 1975.
[76] Sethian, J. A., Theory, algorithms, and applications of level set methods for propagating interfaces. Acta Numerica (1995), Cambridge University Press: Cambridge University Press Cambridge, UK
[77] Sethian, J. A., Level set methods: evolving interfaces in geometry, Fluid mechanics, computer vision and material sciences (1996), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0859.76004
[78] Shin, S.; Juric, D., Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity, J Comput Phys, 180, 427-470 (2002) · Zbl 1143.76595
[79] Sicilian, J. M.; Hirt, C. W., An efficient computation scheme for tracking contaminant concentrations in fluid flows, J Comput Phys, 56, 428-447 (1984) · Zbl 0572.76097
[80] Sousa FS, Mangiavacchi N, Castelo A, Nonato LG, Tomé MF, Cuminato JA. Simulation of 3D free-surface flows with surface tension. In: Proceedings of 16th Brazilian congress of mechanical engineering (COBEM), Uberlândia - MG, CD-ROM, 2001.; Sousa FS, Mangiavacchi N, Castelo A, Nonato LG, Tomé MF, Cuminato JA. Simulation of 3D free-surface flows with surface tension. In: Proceedings of 16th Brazilian congress of mechanical engineering (COBEM), Uberlândia - MG, CD-ROM, 2001.
[81] Sousa, F. S.; Mangiavacchi, N.; Nonato, L. G.; Castelo, A.; Tomé, M. F.; McKee, S., A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces, J Comput Phys, 198, 469-499 (2004) · Zbl 1116.76412
[82] Sussman, M.; Smereka, P., Axisymmetric free boundary problems, J Fluid Mech, 341, 269-294 (1997) · Zbl 0892.76090
[83] Sussman, M.; Fatemi, E., An efficient interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM J Sci Comput, 20, 1165-1191 (1999) · Zbl 0958.76070
[84] Sussman, M.; Puckett, E. G., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J Comput Phys, 162, 301-337 (2000) · Zbl 0977.76071
[85] Tanner, L. H., The spreading of silicone oil on horizontal surfaces, J Phys D, 12, 1473-1484 (1979)
[86] Tanner, R. I., Engineering Rheology (1992), Oxford University Press: Oxford University Press Cambridge, MA · Zbl 0533.76004
[87] Theodorakakos, A.; Bergeles, G., Simulation of sharp gas-liquid interface using VOF method and adaptive grid local refinement around the interface, Int J Numer Methods Fluids, 45, 421-439 (2004) · Zbl 1085.76551
[88] Tomé, M. F.; McKee, S., GENSMAC: a computational marker-and-cell method for free surface flows in general domains, J Comput Phys, 110, 171-186 (1994) · Zbl 0790.76058
[89] Tomé, M. F.; Duffy, B.; McKee, S., A numerical technique for solving unsteady non-Newtonian free surface flows, J Non-Newton Fluid Mech, 62, 9-34 (1996)
[90] Tomé MF, Castelo A, Cuminato JA, McKee S. GENSMAC3D: implementation of the Navier-Stokes equations and boundary conditions for 3D free surface flows, Universidade de São Paulo, Departamento de Ciência de ComputaçÃo e Estatı´stica, Notas do ICMC, No. 29, 1996.; Tomé MF, Castelo A, Cuminato JA, McKee S. GENSMAC3D: implementation of the Navier-Stokes equations and boundary conditions for 3D free surface flows, Universidade de São Paulo, Departamento de Ciência de ComputaçÃo e Estatı´stica, Notas do ICMC, No. 29, 1996.
[91] Tomé, M. F.; McKee, S., Numerical simulation of viscous flow: buckling of planar jets, Int J Numer Methods Fluids, 29, 705-718 (1999) · Zbl 0940.76072
[92] Tomé, M. F.; McKee, S.; Barratt, L.; Jarvis, D. A.; Patrick, A. J., An experimental and numerical investigation of container filling: viscous liquids, Int J Numer Methods Fluids, 31, 1333-1353 (1999) · Zbl 1073.76620
[93] Tomé, M. F.; Castelo, A.; Cuminato, J. A.; Murakami, J.; Minghim, R.; Oliveira, C. F., Numerical simulation of axisymmetric free surface flows, J Comput Phys, 157, 441-472 (2000) · Zbl 0960.76061
[94] Tomé, M. F.; Castelo, A.; Cuminato, J. A.; McKee, S., GENSMAC3D: a numerical method for solving unsteady three-dimensional free surfaces flows, Int J Numer Methods Fluids, 37, 747-796 (2001) · Zbl 1055.76536
[95] Tomé, M. F.; Mangiavacchi, N.; Cuminato, J. A.; Castelo, A.; McKee, S., A numerical technique for solving unsteady viscoelastic free surface flows, J Non-Newton Fluid Mech, 106, 61-106 (2002) · Zbl 1015.76060
[96] Tomé, M. F.; Grossi, L.; Castelo, A.; Cuminato, J. A.; Mangiavacchi, N.; Ferreira, V. G., A numerical method for solving three-dimensional generalized Newtonian free surface flows, J Non-Newton Fluid Mech, 123, 85-103 (2004) · Zbl 1134.76414
[97] Tomé MF, Castelo A, Federson F, Cuminato JA. A numerical method for solving the Oldroyd-B model for 3D free surface flows. In: Proceedings of XIV Congreso sobre Metodos Numericos Y Sys Aplicaciones - ENIEF 2004 - San Carlos de Bariloche, Argentina, 2004.; Tomé MF, Castelo A, Federson F, Cuminato JA. A numerical method for solving the Oldroyd-B model for 3D free surface flows. In: Proceedings of XIV Congreso sobre Metodos Numericos Y Sys Aplicaciones - ENIEF 2004 - San Carlos de Bariloche, Argentina, 2004.
[98] Torrey MD, Mjolsness RC, Stein LR. NASA-VOF3D: a three dimensional computer program for incompressible flows with free surfaces. Technical Report LA-11009-MS, Los Alamos National Laboratory, 1987.; Torrey MD, Mjolsness RC, Stein LR. NASA-VOF3D: a three dimensional computer program for incompressible flows with free surfaces. Technical Report LA-11009-MS, Los Alamos National Laboratory, 1987.
[99] Travis, J. R.; Hirt, C. W.; Rivard, W. C., Multidimensional effects in critical two-phase flow, Nucl Sci Eng, 68, 338 (1978)
[100] Tryggvason, G.; Bunner, B.; Ebrat, O.; Tauber, W., Computations of multiphase flows by a finite difference/front tracking method. I Multi-fluid flows, (29th Computational fluid dynamics. 29th Computational fluid dynamics, Lecture series 1998-03 (1998), Von Karman Institute for Fluid Dynamics)
[101] Tsai, T. M.; Miksis, M. J., Dynamics of a drop in a constricted capillary tube, J Fluid Mech, 274, 197-217 (1994) · Zbl 0825.76139
[102] Varonos, A.; Bergeles, G., Development and assessment of a variable-order non-oscillatory scheme for convection term discretization, Int J Numer Methods Fluids, 26, 1-16 (1998) · Zbl 0906.76060
[103] Wang, J. P.; Borthwick, A. G.L.; Taylor, R. E., Finite-volume-type VOF method on dynamically adaptive quadtree grids, Int J Numer Methods Fluids, 45, 485-508 (2004) · Zbl 1085.76537
[104] Welch JE, Harlow FH, Shannon JP, Daly BJ. The MAC method. Technical Report LA-3425, Los Alamos National Laboratory, 1965.; Welch JE, Harlow FH, Shannon JP, Daly BJ. The MAC method. Technical Report LA-3425, Los Alamos National Laboratory, 1965.
[105] Yoo, J. Y.; Na, Y., A numerical study of the planar contraction flow of a viscoelastic fluid using the simpler algorithm, J Non-Newton Fluid Mech, 30, 89-106 (1991) · Zbl 0718.76076
[106] Yue, W. S.; Lin, C. L.; Patel, V. C., Numerical simulation of unsteady multidimensional free surface motions by level set method, Int J Numer Methods Fluids, 42, 853-884 (2003) · Zbl 1078.76592
[107] Zhao, Y.; Tan, H. H.; Zhang, B. L., A high-resolution characteristics-based implicit dual time-stepping VOF method for free surface flow simulation on unstructured grids, J Comput Phys, 183, 233-273 (2002) · Zbl 1021.76033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.