×

An extended active control for chaos synchronization. (English) Zbl 1228.34078

Summary: By introducing a control strength matrix, the active control theory in chaotic synchronization is developed. With this extended method, chaos complete synchronization can be achieved more easily, i.e., a much smaller control signal is enough to reach synchronization in most cases. Numerical simulations on Rössler, Liu’s four-scroll, and Chen system confirmed this and show that the synchronization result depends on the control strength significantly. Especially, in the case of Liu and Chen systems, the response systems’ largest Lyapunov exponents’ variation with the control strength is not monotone and there exist minima. It is novel for Chen system that the synchronization speed with a special small strength is higher than that of the usual active control which, as a special case of the extended method, has a much larger control strength. All these results indicate that the control strength is an important factor in the actual synchronization. So, with this extended active control, one can make a better and more practical synchronization scheme by adjusting the control strength matrix.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pecora, L. M.; Carrol, T. L., Phys. Rev. Lett., 64, 821 (1990)
[2] Cuomo, K. M.; Oppenheim, A. V., Phys. Rev. Lett., 71, 65 (1993)
[3] Kocarev, L.; Parlitz, U., Phys. Rev. Lett., 74, 5028 (1995)
[4] Chen, H. K.; Lin, T. N.; Chen, J. H., Jpn. J. Appl. Phys., 42, 7603 (2003)
[5] Tang, D. Y.; Heckenberg, N. R., Phys. Rev. E, 55, 6618 (1997)
[6] Baker, G. L.; Blackburn, J. A.; Smith, H. J.T., Phys. Rev. Lett., 81, 554 (1998)
[7] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Phys. Rev. Lett., 76, 1804 (1996)
[8] Parlitz, U.; Junge, L.; Lauterborn, W.; Kocarev, K., Phys. Rev. E, 54, 2115 (1996)
[9] Lee, K. J.; Kwak, Y.; Lim, T. K., Phys. Rev. Lett., 81, 321 (1998)
[10] Roman, F. S.S.; Boccaletti, S.; Maza, D.; Mancini, H., Phys. Rev. Lett., 81, 3639 (1998)
[11] Lu, H. T.; He, Z. Y., Phys. Lett. A, 219, 271 (1996)
[12] Shuai, J. W.; Durand, D. M., Phys. Lett. A, 264, 289 (1999)
[13] Liao, T. L.; Huang, N. S., Phys. Lett. A, 234, 262 (1997)
[14] Vassiliadis, D., Physica D, 71, 319 (1994)
[15] Chen, S. H.; Lü, J. H., Phys. Lett. A, 299, 353 (2002)
[16] Solak, E.; Morgul, O.; Ersoy, U., Phys. Lett. A, 279, 47 (2001) · Zbl 0972.37020
[17] Ramirez, J. A.; Puebla, H.; Cervantes, H., Phys. Lett. A, 289, 193 (2001)
[18] Huang, L. L.; Feng, R. P.; Wang, M., Phys. Lett. A, 320, 271 (2004)
[19] Chen, H. K., Chaos Solitons Fractals, 23, 1245 (2005)
[20] Yu, H. J.; Liu, Y. Z., Phys. Lett. A, 314, 292 (2003)
[21] Tang, R. A.; Xue, J. K., Chaos Solitons Fractals, 28, 228 (2006)
[22] Ge, Z. M.; Tsen, P. C., Nonlinear Anal., 69, 4604 (2008)
[23] Bai, E. W.; Lonngren, K. E., Chaos Solitons Fractals, 8, 51 (1997)
[24] Bai, E. W.; Lonngren, K. E., Chaos Solitons Fractals, 11, 1041 (2000)
[25] Agiza, H. N.; Yassen, M. T., Phys. Lett. A, 278, 191 (2001)
[26] Li, Z.; Han, C. Z.; Shi, S. J., Phys. Lett. A, 301, 224 (2002)
[27] Codreanu, S., Chaos Solitons Fractals, 15, 507 (2003)
[28] Njah, A. N.; Vincent, U. E., J. Sound Vib., 319, 41 (2009)
[29] Ho, M. C.; Hung, Y. C.; Chou, C. H., Phys. Lett. A, 296, 43 (2002)
[30] Ho, M. C.; Hung, Y. C., Phys. Lett. A, 301, 424 (2002)
[31] Yassen, M. T., Chaos Solitons Fractals, 28, 228 (2006)
[32] Liu, W. B.; Chen, G. R., Int. J. Bifur. Chaos, 13, 261 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.