×

Dissipative design of unknown input observers for systems with sector nonlinearities. (English) Zbl 1227.93018

Summary: A design method for nonlinear Unknown Input Observers (UIO) for a class of nonlinear systems is proposed. This design is based on a dissipative characterization of the existence conditions for such observers derived recently by the authors. The main condition corresponds to an abstract incremental dissipativity property of the plant, which can be made computable by the use of LMI techniques for the considered class of systems. This leads to a constructive design method for nonlinear UIOs.

MSC:

93B07 Observability
93C10 Nonlinear systems in control theory
93D99 Stability of control systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hautus, Strong detectability and observers, Linear Algebra and its Applications 50 pp 353– (1983) · Zbl 0528.93018 · doi:10.1016/0024-3795(83)90061-7
[2] Moreno, Proceedings of the 39th IEEE Conference on Decision and Control pp 790– (2000)
[3] Pertew, H synthesis of unknown input oberver for nonlinear Lipschitz systems, International Journal of Control 78 (15) pp 1155– (2005) · Zbl 1077.93018 · doi:10.1080/00207170500155488
[4] Rocha-Cózatl, Proceedings of the 6th IFAC-Symposium on Nonlinear Control Systems (NOLCOS 2004) pp 615– (2004)
[5] Tmar Z Hammouri H Mechmeche C Unknown input observer for state affine systems-a geometric existence condition 1630 1635
[6] Seliger, Issues of Fault Diagnosis for Dynamic Systems (2000)
[7] Yan, Nonlinear robust fault reconstruction and estimation using a sliding mode observer, Automatica 43 pp 1605– (2007) · Zbl 1128.93389 · doi:10.1016/j.automatica.2007.02.008
[8] Aldeen, Decentralised observer-based control scheme for interconnected dynamical systems with unknown inputs, IEE Proceedings of Control Theory and Applications 146 (5) pp 349– (1999) · doi:10.1049/ip-cta:19990540
[9] Moreno, Proceedings of the 40th IEEE Conference on Decision and Control pp 3366– (2001)
[10] Boukhobza, State and input observability for structured linear systems: a graph-theoretic approach, Automatica 43 pp 1204– (2007) · Zbl 1123.93024 · doi:10.1016/j.automatica.2006.12.004
[11] Darouach M Complements to full order observer design for linear systems with unknown inputs 2009 10.1016/j.aml.2008.11.004
[12] Lin, Unknown input observers for singular systems designed by eigenstructure assignment, Journal of the Franklin Institute 340 pp 43– (2003) · Zbl 1027.93006 · doi:10.1016/S0016-0032(03)00009-7
[13] Xiong, Unknown disturbance inputs estimation based on a state functional observer design, Automatica 39 pp 1389– (2003) · Zbl 1037.93015 · doi:10.1016/S0005-1098(03)00087-6
[14] Barbot, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 pp 6341– (2005) · doi:10.1109/CDC.2005.1583178
[15] Bowong, Unknown inputs’ adaptive observer for a class of chaotic systems with uncertainties, Mathematical and Computer Modelling 48 pp 1826– (2008) · Zbl 1187.93059 · doi:10.1016/j.mcm.2007.12.028
[16] Chen W Saif M Unknown input observer design for a class of nonlinear systems: an LMI approach 834 838
[17] Ha, State and input simultaneous estimation for a class of nonlinear systems, Automatica 40 pp 1779– (2004) · Zbl 1088.93004 · doi:10.1016/j.automatica.2004.05.012
[18] Koenig, Observer design for unknown input nonlinear descriptor systems via convex optimization, IEEE Transactions on Automatic Control 51 (6) pp 1047– (2006) · Zbl 1366.93208 · doi:10.1109/TAC.2006.876807
[19] Zemouche, Observers for a class of Lipschitz systems with extension to H performance analysis, Systems and Control Letters 57 pp 18– (2008) · Zbl 1129.93006 · doi:10.1016/j.sysconle.2007.06.012
[20] Hill, Dissipative dynamical systems: Basic input-output and state properties, Journal of the Franklin Institute 309 pp 327– (1980) · Zbl 0451.93007 · doi:10.1016/0016-0032(80)90026-5
[21] Khalil, Nonlinear Systems (2002)
[22] Moreno J Observer design for nonlinear systems: a dissipative approach 735 740
[23] Willems, Dissipative dynamical systems, part I: general theory, Archive for Rational Mechanics and Analysis 45 pp 321– (1972) · Zbl 0252.93002 · doi:10.1007/BF00276493
[24] Willems, Dissipative dynamical systems, part II: linear systems with quadratic supply rates, Archive for Rational Mechanics and Analysis 45 pp 352– (1972) · Zbl 0252.93003 · doi:10.1007/BF00276494
[25] Boyd, Linear Matrix Inequalities in System and Control Theory (1994) · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[26] Krener, Nonlinear observers with linear error dynamics, SIAM Journal on Control and Optimization 23 pp 197– (1985) · Zbl 0569.93035 · doi:10.1137/0323016
[27] Moreno, Lecture Notes in Control and Information Sciences, in: Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems pp 35– (2005) · Zbl 1100.93008 · doi:10.1007/11529798_3
[28] Rajamani, Observers for Lipschitz nonlinear systems, IEEE Transactions on Automatic Control 43 pp 397– (1998) · Zbl 0905.93009 · doi:10.1109/9.661604
[29] Gauthier, A simple observer for nonlinear systems. applications to bioreactors, IEEE Transactions on Automatic Control 37 pp 875– (1992) · Zbl 0775.93020 · doi:10.1109/9.256352
[30] Arcak, Nonlinear observers: a circle criterion design and robustness analysis, Automatica 37 pp 923– (2001) · Zbl 0996.93010 · doi:10.1016/S0005-1098(01)00160-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.