×

Stochastic finite-time boundedness of Markovian jumping neural network with uncertain transition probabilities. (English) Zbl 1219.93143

Summary: The stochastic finite-time boundedness problem is considered for a class of uncertain Markovian jumping neural networks (MJNNs) that possess partially known transition jumping parameters. The transition of the jumping parameters is governed by a finite-state Markov process. By selecting the appropriate stochastic Lyapunov-Krasovskii functional, sufficient conditions of stochastic finite time boundedness of MJNNs are presented and proved. The boundedness criteria are formulated in the form of linear matrix inequalities and the designed algorithms are described as optimization ones. Simulation results illustrate the effectiveness of the developed approaches.

MSC:

93E15 Stochastic stability in control theory
60J27 Continuous-time Markov processes on discrete state spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, T.; Guo, L.; Sun, C., Robust stability for neural networks with time-varying delays and linear fractional uncertainties, Neurocomputing, 71, 421-427 (2007)
[2] Liu, Y.; Wang, Z.; Liu, X., State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays, Phys. Lett. A, 372, 7145-7155 (2008) · Zbl 1227.92002
[3] Liang, J.; Wang, Z.; Liu, Y.; Liu, X., Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances, IEEE Trans. Syst. Man Cybernet., 38, 1073-1083 (2008)
[4] Luan, X.; He, S.; Liu, F., Neutral network-based robust fault detection for nonlinear jump systems, Chaos Solitons Fractals, 42, 706-766 (2009) · Zbl 1198.93227
[5] Park, J. H., Further note on global exponential stability of uncertain cellular neural networks with variable delays, Appl. Math. Comput., 188, 850-854 (2007) · Zbl 1126.34376
[6] Shen, Y.; Li, C., LMI-based finite-time boundedness analysis of neural networks with parametric uncertainties, Neurocomputing, 71, 502-507 (2008)
[7] Wang, Z.; Liu, Y.; Liu, X., On global asymptotic stability of neural networks with discrete and distributed delays, Phys. Lett. A, 345, 299-308 (2005) · Zbl 1345.92017
[8] Wang, Z.; Shu, H.; Fang, J.; Liu, X., Robust stability for stochastic Hopfield neural networks with time delays, Nonlinear Anal. Real World Appl., 7, 1119-1128 (2006) · Zbl 1122.34065
[9] Wang, Z.; Liu, Y.; Liu, X., Exponential stability of delayed recurrent neural networks with Markovian jumping parameters, Phys. Lett. A, 356, 346-352 (2006) · Zbl 1160.37439
[10] Wang, Z.; Liu, Y.; Fraser, K.; Liu, X., Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays, Phys. Lett. A, 354, 288-297 (2006) · Zbl 1181.93068
[11] Wang, Z.; Liu, Y.; Liu, X., State estimation for jumping recurrent neural networks with discrete and distributed delays, Neural Networks, 22, 41-48 (2009) · Zbl 1335.93125
[12] Yu, W.; Yao, L., Global robust stability of neural networks with time varying delays, J. Comput. Appl. Math., 206, 679-687 (2007) · Zbl 1115.37017
[13] Amato, F.; Ariola, M.; Dorato, P., Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica, 37, 1459-1463 (2001) · Zbl 0983.93060
[14] P. Dorato, Short time stability in linear time-varying systems, in: Proceedings of IRE international Convention Record 1961, New York, USA, pp. 83-87.; P. Dorato, Short time stability in linear time-varying systems, in: Proceedings of IRE international Convention Record 1961, New York, USA, pp. 83-87.
[15] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1994), SIAM: SIAM Philadelphia, PA · Zbl 0816.93004
[16] Amoto, F.; Ariola, M., Finite-time control of discrete-time linear systems, IEEE Trans. Automat. Control, 50, 724-729 (2005) · Zbl 1365.93182
[17] Amoto, F.; Ariola, M.; Cosentino, C., Finite-time stabilization via dynamic output feedback, Automatica, 42, 337-342 (2006) · Zbl 1099.93042
[18] Amato, F.; Ambrosino, R.; Ariola, M.; Cosentino, C., Finite-time stability of linear time-varying systems with jumps, Automatica, 45, 1354-1358 (2009) · Zbl 1162.93375
[19] He, S.; Liu, F., Robust finite-time stabilization of uncertain fuzzy jump systems, Int. J. Innovat. Comput. Inform. Control, 6, 3853-3862 (2010)
[20] Feng, X.; Loparo, K. A.; Ji, Y., Stochastic stability properties of jump linear systems, IEEE Trans. Automat. Control, 37, 38-53 (1992) · Zbl 0747.93079
[21] He, S.; Liu, F., Unbiased \(H_∞\) filtering for neutral Markov jump systems, Appl. Math. Comput., 206, 175-185 (2008) · Zbl 1152.93052
[22] He, S.; Liu, F., Fuzzy model-based fault detection for Markov jump systems, Int. J. Robust Nonlinear Control, 19, 1248-1266 (2009) · Zbl 1166.93343
[23] Ji, Y.; Chizeck, H. J., Controllability, stability and continuous time Markov jump linear quadratic control, IEEE Tran. Autom. Control, 35, 777-788 (1999) · Zbl 0714.93060
[24] Mao, X., Stability of stochastic differential equations with Markovian switching, Stoch. Process. Appl., 79, 45-67 (1999) · Zbl 0962.60043
[25] Mahmoud, M. S.; Al-Sunni, F. M.; Shi, Y., Mixed \(H_2\)−\(H_∞\) control of uncertain jumping time-delay systems, J. Franklin Inst., 345, 536-552 (2008) · Zbl 1167.93024
[26] M.A. Rami, L. El Ghaoui, Robust stabilization of jump linear systems using linear matrix inequalities, in: Proceedings of IFAC Symposium Robust Control Design 1994, Rio de Janeiro, Brazil, pp. 148-151.; M.A. Rami, L. El Ghaoui, Robust stabilization of jump linear systems using linear matrix inequalities, in: Proceedings of IFAC Symposium Robust Control Design 1994, Rio de Janeiro, Brazil, pp. 148-151.
[27] Wang, Y.; Xie, L.; de Souza, C. E., Robust control of a class of uncertain nonlinear systems, Syst. Control Lett., 19, 139-149 (1992) · Zbl 0765.93015
[28] Huang, Z.; Li, X.; Mohamad, S.; Lu, Z., Robust stability analysis of static neural network with S-type distributed delays, Appl. Math. Model., 33, 760-769 (2009) · Zbl 1168.34353
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.