×

Auxiliary principle technique for solving bifunction variational inequalities. (English) Zbl 1219.90172

Summary: In this paper, we use the auxiliary principle technique to suggest and analyze an implicit iterative method for solving bifunction variational inequalities. We also study the convergence criteria of this new method under pseudomonotonicity condition.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Crespi, G.P.J., Ginchev, J., Rocca, M.: Minty variational inequalities, increase along rays property and optimization. J. Optim. Theory Appl. 123, 479–496 (2004) · Zbl 1059.49010 · doi:10.1007/s10957-004-5719-y
[2] Crespi, G.P.J., Ginchev, J., Rocca, M.: Existence of solutions and star-shapedness in Minty variational inequalities. J. Glob. Optim. 32, 485–494 (2005) · Zbl 1097.49007 · doi:10.1007/s10898-003-2685-0
[3] Crespi, G.P.J., Ginchev, J., Rocca, M.: Increasing along rays property for vector functions. J. Nonconvex Anal. 7, 39–50 (2006) · Zbl 1149.49008
[4] Crespi, G.P.J., Ginchev, J., Rocca, M.: Some remarks on the Minty vector variational principle. J. Math. Anal. Appl. 345, 165–175 (2008) · Zbl 1152.49007 · doi:10.1016/j.jmaa.2008.03.012
[5] Fang, Y.P., Hu, R.: Parametric well-posedness for variational inequalities defined by bifunction. Comput. Math. Appl. 53, 1306–1316 (2007) · Zbl 1168.49307 · doi:10.1016/j.camwa.2006.09.009
[6] Lalitha, C.S., Mehra, M.: Vector variational inequalities with cone-pseudomonotone bifunction. Optimization 54, 327–338 (2005) · Zbl 1087.90069 · doi:10.1080/02331930500100254
[7] Noor, M.A.: Some new classes of nonconvex functions. Nonlinear Funct. Anal. Appl. 11, 165–171 (2006) · Zbl 1107.26014
[8] Gloawinski, R., Lions, L.J., Tremolieres, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981) · Zbl 0463.65046
[9] Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964) · Zbl 0124.06401
[10] Noor, M.A.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251, 217–229 (2000) · Zbl 0964.49007 · doi:10.1006/jmaa.2000.7042
[11] Noor, M.A.: Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl. 122, 371–386 (2004) · Zbl 1092.49010 · doi:10.1023/B:JOTA.0000042526.24671.b2
[12] Noor, M.A., Noor, K.I., Rassias, T.M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47, 285–312 (1993) · Zbl 0788.65074 · doi:10.1016/0377-0427(93)90058-J
[13] Zhu, D.L., Marcotte, P.: Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities. SIAM J. Optim. 6, 714–726 (1996) · Zbl 0855.47043 · doi:10.1137/S1052623494250415
[14] Noor, M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004) · Zbl 1134.49304 · doi:10.1016/S0096-3003(03)00558-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.