×

Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. (English) Zbl 1214.34009

Sufficient conditions for the existence and uniqueness of a solution to an anti-periodic boundary value problem of nonlinear impulsive differential equations of fractional order \(\alpha \in (2,3]\) are presented. The main tools are some well-known fixed point theorems. Two examples are given to demonstrate the main results.

MSC:

34A08 Fractional ordinary differential equations
34B37 Boundary value problems with impulses for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, Theory and Applications (1993), Gordon and Breach: Gordon and Breach Yverdon · Zbl 0818.26003
[2] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., (Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204 (2006), Elsevier Science B.V.: Elsevier Science B.V. Amsterdam) · Zbl 1092.45003
[4] (Sabatier, J.; Agrawal, O. P.; Machado, J. A.T., Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (2007), Springer: Springer Dordrecht) · Zbl 1116.00014
[5] Lakshmikantham, V.; Vatsala, A. S., Basic theory of fractional differential equations, Nonlinear Anal., 69, 8, 2677-2682 (2008) · Zbl 1161.34001
[6] Lakshmikantham, V.; Leela, S.; Vasundhara Devi, J., Theory of Fractional Dynamic Systems (2009), Cambridge Academic Publishers: Cambridge Academic Publishers Cambridge · Zbl 1188.37002
[7] Lazarević, M. P.; Spasić, A. M., Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach, Math. Comput. Modelling, 49, 475-481 (2009) · Zbl 1165.34408
[8] Bai, Z. B.; Lü, H. S., Positive solutions of boundary value problems of nonlinear fractional differential equation, J. Math. Anal. Appl., 311, 495-505 (2005) · Zbl 1079.34048
[9] Agarwal, R. P.; Belmekki, M.; Benchohra, M., A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Differential Equations (2009), 47. Art. ID 981728 · Zbl 1182.34103
[10] Benchohra, M.; Hamani, S.; Ntouyas, S. K., Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal., 71, 2391-2396 (2009) · Zbl 1198.26007
[11] Darwish, M. A.; Ntouyas, S. K., On initial and boundary value problems for fractional order mixed type functional differential inclusions, Comput. Math. Appl., 59, 1253-1265 (2010) · Zbl 1189.34029
[12] Balachandran, K.; Trujillo, J. J., The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear Anal., 72, 4587-4593 (2010) · Zbl 1196.34007
[13] McRae, F. A., Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal. (2009) · Zbl 1260.34014
[14] Belmekki, M.; Nieto, J. J.; Rodriguez-Lopez, R., Existence of periodic solution for a nonlinear fractional differential equation, Bound. Value Probl., 2009 (2009), 18 pages. Article ID 324561 · Zbl 1181.34006
[15] Chang, Y. K.; Nieto, J. J., Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling, 49, 605-609 (2009) · Zbl 1165.34313
[16] Ahmad, B.; Nieto, J. J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58, 1838-1843 (2009) · Zbl 1205.34003
[17] Ahmad, B.; Nieto, J. J., Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl., 2009 (2009), 11 pages. Article ID 708576 · Zbl 1167.45003
[18] Zhang, S. Q., Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. Math. Appl., 59, 1300-1309 (2010) · Zbl 1189.34050
[19] Nakao, M., Existence of an anti-periodic solution for the quasilinear wave equation with viscosity, J. Math. Anal. Appl., 204, 754-764 (1996) · Zbl 0873.35051
[20] Chen, H. L., Antiperiodic wavelets, J. Comput. Math., 14, 32-39 (1996) · Zbl 0839.42014
[21] Souplet, P., Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations, Nonlinear Anal., 32, 279-286 (1998) · Zbl 0892.35078
[22] Delvos, F. J.; Knoche, L., Lacunary interpolation by antiperiodic trigonometric polynomials, BIT, 39, 439-450 (1999) · Zbl 0931.42003
[23] Cabada, A.; Vivero, D. R., Existence and uniqueness of solutions of higher-order antiperiodic dynamic equations, Adv. Differential Equations, 4, 291-310 (2004) · Zbl 1083.39017
[24] Agarwal, R. P.; Cabada, A.; Otero-Espinar, V.; Dontha, S., Existence and uniqueness of solutions for anti-periodic difference equations, Arch. Inequal. Appl., 2, 397-411 (2004) · Zbl 1087.39001
[25] Wang, Y.; Shi, Y. M., Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions, J. Math. Anal. Appl., 309, 56-69 (2005) · Zbl 1083.39019
[26] Chen, Y.; Nieto, J. J.; O’Regan, D., Antiperiodic solutions for fully nonlinear first-order differential equations, Math. Comput. Modelling, 46, 9-10, 1183-1190 (2007) · Zbl 1142.34313
[27] Ahmad, B.; Nieto, J. J., Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions, Nonlinear Anal., 69, 3291-3298 (2008) · Zbl 1158.34049
[28] Shao, J., Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays, Phys. Lett. A, 372, 5011-5016 (2008) · Zbl 1221.92007
[29] Liu, B., An anti-periodic LaSalle oscillation theorem for a class of functional differential equations, J. Comput. Appl. Math., 223, 1081-1086 (2009) · Zbl 1166.34323
[30] Ahmad, B.; Otero-Espinar, V., Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions, Bound. Value Probl. (2009), 11 pages. Art. ID 625347 · Zbl 1172.34004
[31] Ahmad, B.; Nieto, J. J., Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topol. Methods Nonlinear Anal., 35, 295-304 (2010) · Zbl 1245.34008
[32] Ahmad, B., Existence of solutions for fractional differential equations of order \(q \in(2, 3]\) with anti-periodic boundary conditions, J. Appl. Math. Comput., 34, 385-391 (2010) · Zbl 1216.34003
[33] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations (1989), World Scientific: World Scientific Singapore · Zbl 0719.34002
[34] Rogovchenko, Y. V., Impulsive evolution systems: main results and new trends, Dyn. Contin. Discrete Impuls. Syst., 3, 57-88 (1997) · Zbl 0879.34014
[35] Samoilenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations (1995), World Scientific: World Scientific Singapore · Zbl 0837.34003
[36] Zavalishchin, S. T.; Sesekin, A. N., Dynamic Impulse Systems. Theory and Applications (1997), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht · Zbl 0880.46031
[37] Sun, J. X., Nonlinear Functional Analysis and its Application (2008), Science Press: Science Press Beijing
[38] Wang, G.; Zhang, L.; Song, G., Extremal solutions for the first order impulsive functional differential equations with upper and lower solutions in reversed order, J. Comput. Appl. Math. (2010) · Zbl 1210.34110
[39] Agarwal, R. P.; Benchohra, M.; Slimani, B. A., Existence results for differential equations with fractional order and impulses, Mem. Differential Equations Math. Phys., 44, 1-21 (2008) · Zbl 1178.26006
[40] Ahmad, B.; Sivasundaram, S., Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal. Hybrid Syst., 3, 251-258 (2009) · Zbl 1193.34056
[41] Ahmad, B.; Sivasundaram, S., Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal. Hybrid Syst., 4, 134-141 (2010) · Zbl 1187.34038
[42] Mophou, G. M., Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear Anal., 72, 1604-1615 (2010) · Zbl 1187.34108
[43] Chang, Y. K.; Nieto, J. J., Existence of solutions for impulsive neutral integrodifferential inclusions with nonlocal initial conditions via fractional operators, Numer. Funct. Anal. Optim., 30, 227-244 (2009) · Zbl 1176.34096
[44] Abbas, S.; Benchohra, M., Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order, Nonlinear Anal. Hybrid Syst., 4, 3, 406-413 (2010) · Zbl 1202.35340
[45] Chang, Y.-K.; Nieto, Juan J.; Zhao, Zhi-Han, Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Anal. Hybrid Syst., 4, 3, 593-599 (2010) · Zbl 1209.34093
[46] R.P. Agarwal, B. Ahmad, Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. (in press).; R.P. Agarwal, B. Ahmad, Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. (in press). · Zbl 1226.26005
[47] Zhang, X.; Huang, X.; Liu, Z., The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Anal. Hybrid Syst. (2010)
[48] Tian, Y.; Bai, Z., Existence results for the three-point impulsive boundary value problem involving fractional differential equations, Comput. Math. Appl. (2010) · Zbl 1193.34007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.