×

Asymptotically linear solutions for some linear fractional differential equations. (English) Zbl 1210.34005

Summary: We establish that under some simple restrictions on the functional coefficient \(a(t)\) the fractional differential equation
\[ _0D^\alpha_t[tx'-x+x(0)]+a(t)x=0,\quad t>0, \]
has a solution expressible as \(ct+d+o(1)\) for \(t\to+\infty\), where \(_0D^\alpha_t\) designates the Riemann-Liouville derivative of order \(a\in (0,1)\) and \(c,d\in\mathbb R\).

MSC:

34A08 Fractional ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
34A30 Linear ordinary differential equations and systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] O. G. Mustafa and Y. V. Rogovchenko, “Asymptotic integration of a class of nonlinear differential equations,” Applied Mathematics Letters, vol. 19, no. 9, pp. 849-853, 2006. · Zbl 1126.34339 · doi:10.1016/j.aml.2005.10.013
[2] R. P. Agarwal and O. G. Mustafa, “A Riccatian approach to the decay of solutions of certain semi-linear PDE’s,” Applied Mathematics Letters, vol. 20, no. 12, pp. 1206-1210, 2007. · Zbl 1137.35356 · doi:10.1016/j.aml.2006.11.015
[3] O. G. Mustafa, “Hille’s non-oscillation theorem and the decay of solutions to a class of semi-linear PDE’s,” Archiv der Mathematik, vol. 89, no. 5, pp. 452-458, 2007. · Zbl 1147.35014 · doi:10.1007/s00013-007-2201-8
[4] S. Lang, Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1999. · Zbl 0932.53001
[5] V. Lakshmikantham, “Theory of fractional functional differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 10, pp. 3337-3343, 2008. · Zbl 1162.34344 · doi:10.1016/j.na.2007.09.025
[6] V. Lakshmikantham and A. S. Vatsala, “Basic theory of fractional differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 8, pp. 2677-2682, 2008. · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042
[7] R. P. Agarwal, M. Benchohra, and S. Hamani, “Boundary value problems for fractional differential equations,” Georgian Mathematical Journal, vol. 16, no. 3, pp. 401-411, 2009. · Zbl 1179.26011
[8] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[9] F. Riewe, “Mechanics with fractional derivatives,” Physical Review E, vol. 55, no. 3, pp. 3581-3592, 1997. · doi:10.1103/PhysRevE.55.3581
[10] S. Westerlund, “Causality,” Tech. Rep. 940426, University of Kalmar, Kalmar, Sweden, 1994.
[11] X. Y. Jiang and M. Y. Xu, “The fractional finite Hankel transform and its applications in fractal space,” Journal of Physics A, vol. 42, no. 38, Article ID 385201, 11 pages, 2009. · Zbl 1187.44002 · doi:10.1088/1751-8113/42/38/385201
[12] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[13] D. B\ualeanu, O. G. Mustafa, and R. P. Agarwal, “An existence result for a superlinear fractional differential equation,” Applied Mathematics Letters, vol. 23, no. 9, pp. 1129-1132, 2010. · Zbl 1200.34004 · doi:10.1016/j.aml.2010.04.049
[14] D. B\ualeanu, O. G. Mustafa, and R. P. Agarwal, “On the solution set for a class of sequential fractional differential equations,” Journal of Physics A, vol. 43, Article ID 385209, 2010. · Zbl 1216.34004 · doi:10.1088/1751-8113/43/38/385209
[15] Y. Zhou and F. Jiao, “Nonlocal Cauchy problem for fractional evolution equations,” Nonlinear Analysis: Real World Applications, vol. 11, no. 5, pp. 4465-4475, 2010. · Zbl 1260.34017 · doi:10.1016/j.nonrwa.2010.05.029
[16] N. H. Ibragimov and V. F. Kovalev, Approximate and Renormgroup Symmetries, Nonlinear Physical Science, Higher Education Press, Beijing, China; Springer, Berlin, Germany, 2009. · Zbl 1170.22001 · doi:10.1007/978-3-642-00228-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.