×

Dynamic output-feedback guaranteed cost control for linear systems with uniform input quantization. (English) Zbl 1205.93055

Summary: A lot of work was done on guaranteed cost control for systems with dynamic or logarithmic quantizer; however, intensive studies not only on continuous-time output-feedback linear systems with uniform input quantization but also on guaranteed cost control for such systems have not been carried out thus far. This paper first solves the problem of guaranteeing the Linear Quadratic (LQ) cost for continuous-time output-feedback linear systems with uniform input quantization. The proposed output-feedback controller comprises the main and the additional control parts. The former part is designed as a linear dynamic output-feedback controller for determining the fundamental characteristics of the system associated with the LQ cost, and the latter part is constructed as an integer multiple of the quantization level for eliminating the effect of uniform input quantization. The additional control part adopts the state estimate instead of the state itself, which causes the state estimation errors. By computing their quantity added to the upper bound of the LQ cost, this paper shows that the proposed controller still guarantees the LQ cost despite the state estimation errors.

MSC:

93B52 Feedback control
93C05 Linear systems in control theory
93D20 Asymptotic stability in control theory
93B12 Variable structure systems
49N10 Linear-quadratic optimal control problems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kalman, R.E.: Nonlinear aspects of sampled-data control systems. In: Proc. Symp. Nonlinear Circuit Theory, Brooklyn, NY (1956) · Zbl 0081.34901
[2] Curry, R.E.: Estimation and control with quantized measurements. MIT Press, Cambridge (1970) · Zbl 0217.58504
[3] Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE Trans. Automat. Control 45(7), 1279–1289 (2000) · Zbl 0988.93069 · doi:10.1109/9.867021
[4] Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica 39(9), 1543–1554 (2003) · Zbl 1030.93042 · doi:10.1016/S0005-1098(03)00151-1
[5] Tian, E., Yue, D., Zhao, X.: Quantised control design for networked control systems. IET Control Theory Appl. 1(6), 1693–1699 (2007) · doi:10.1049/iet-cta:20060499
[6] Azuma, S., Sugie, T.: Optimal dynamic quantizers for discrete-valued input control. Automatica 44(2), 396–406 (2008) · Zbl 1283.93168 · doi:10.1016/j.automatica.2007.06.012
[7] Goodwin, G.C., Quevedo, D.E., Silva, E.I.: Architectures and coder design for networked control systems. Automatica 44(1), 248–257 (2008) · Zbl 1138.93302 · doi:10.1016/j.automatica.2007.05.015
[8] Che, W., Yang, G.: State feedback control for quantized discrete-time systems. Asian J. Control 10(6), 718–723 (2008) · doi:10.1002/asjc.72
[9] Fu, M., Xie, L.: Quantized feedback control for linear uncertain systems. Int. J. Robust Nonlinear Control (2009). doi: 10.1002/rnc.1466 · Zbl 1298.93134
[10] Choi, Y.J., Yun, S.W., Park, P.: Asymptotic stabilisation of system with finite-level logarithmic quantiser. Electron. Lett. 44(19), 1117–1119 (2008) · doi:10.1049/el:20081492
[11] Delchamps, D.F.: Stabilizing a linear system with quantized state feedback. IEEE Trans. Automat. Control 35(8), 916–924 (1990) · Zbl 0719.93067 · doi:10.1109/9.58500
[12] Elia, N., Mitter, S.K.: Stabilization of linear systems with limited information. IEEE Trans. Automat. Control 46(9), 1384–1400 (2001) · Zbl 1059.93521 · doi:10.1109/9.948466
[13] Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans. Automat. Control 50(11), 1698–1711 (2005) · Zbl 1365.81064 · doi:10.1109/TAC.2005.858689
[14] Gao, H., Chen, T., Lam, J.: A new delay system approach to network-based control. Automatica 44(1), 39–52 (2008) · Zbl 1138.93375 · doi:10.1016/j.automatica.2007.04.020
[15] Gao, H., Chen, T.: A new approach to quantized feedback control systems. Automatica 44(2), 534–542 (2008) · Zbl 1283.93131 · doi:10.1016/j.automatica.2007.06.015
[16] Park, P., Choi, Y.J., Yun, S.W.: Eliminating effect of input quantisation in linear systems. Electron. Lett. 44(7), 456–457 (2008) · doi:10.1049/el:20080002
[17] Wong, W.S., Brockett, R.W.: Systems with finite communication bandwidth constraints–II: Stabilization with limited information feedback. IEEE Trans. Automat. Control 44(5), 1049–1053 (1999) · Zbl 1136.93429 · doi:10.1109/9.763226
[18] Yue, D., Peng, C., Tang, G.Y.: Guaranteed cost control of linear systems over networks with state and input quantisations. IEE Proc. Control Theory Appl. 153(6), 658–664 (2006) · doi:10.1049/ip-cta:20050294
[19] Yun, S.W., Choi, Y.J., Park, P.: 2 control of continuous-time uncertain linear systems with input quantization and matched disturbances. Automatica 45(10), 2435–2439 (2009) · Zbl 1183.93117 · doi:10.1016/j.automatica.2009.05.023
[20] Choi, H.H.: Variable structure output feedback control design for a class of uncertain dynamic systems. Automatica 38(2), 335–341 (2002) · Zbl 0991.93021 · doi:10.1016/S0005-1098(01)00211-4
[21] Park, P., Choi, D.J., Kong, S.G.: Output feedback variable structure control for linear systems with uncertainties and disturbances. Automatica 43(1), 72–79 (2007) · Zbl 1140.93342 · doi:10.1016/j.automatica.2006.07.015
[22] Kwatny, H.G., Teolis, C., Mattice, M.: Variable structure control of systems with uncertain nonlinear friction. Automatica 38(7), 1251–1256 (2002) · Zbl 1001.93009 · doi:10.1016/S0005-1098(02)00011-0
[23] Huang, Y.J., Wang, Y.J.: Steady-state analysis for a class of sliding mode controlled systems using describing function method. Nonlinear Dyn. 30(3), 223–241 (2002) · Zbl 1016.93016 · doi:10.1023/A:1020565510218
[24] Boyd, S., El Ghaoui, L., Feron, E., Balakrishman, V.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia (1994)
[25] Packard, A., Zhou, K., Pandey, P., Becker, G.: A collection of robust control problems leading to LMIs. In: IEEE Conf. Decis. Control Bright. Engl., pp. 1245–1250 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.