×

A model aided understanding of spot pattern formation in chemotactic E. Coli colonies. (English) Zbl 1204.92010

Summary: Colonies of mutant E. coli strains, when inoculated in the centre of a plate, form highly symmetric, stable spot patterns. These spot patterns are only observed in chemotactic E. coli strains, i.e., strains that bias their motion so that cell populations move up gradients of a chemical in the cells’ local environment. It is an important question whether these patterns are due to genetic control or self-organization. We present a macroscopic continuum model of E. coli pattern formation that incorporates cell diffusion, chemotaxis, population growth and conversion to an inactive state. This model satisfactorily reproduces the observed spot patterns, supporting the view that these patterns are indeed a result of self-organization, and allows us to infer plausible minimal mechanisms that generate the observed patterns.

MSC:

92C15 Developmental biology, pattern formation
92C17 Cell movement (chemotaxis, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ben-Jacob E., Cohen I., Levine H.: Cooperative self-organization of microorganisms. Adv. Phys. 49(4), 395–554 (2000) · doi:10.1080/000187300405228
[2] Ben-Jacob E., Cohen I., Schochet O., Aranson I., Levine H., Tsimring L.: Complex bacterial patterns. Nature 373, 566–567 (1995) · doi:10.1038/373566a0
[3] Berg H.C.: E. coli in Motion. Springer, Berlin (2003)
[4] Brenner M.P., Levitov L.S., Budrene E.O.: Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J. 74, 1677–1693 (1998) · doi:10.1016/S0006-3495(98)77880-4
[5] Bruno W.J.: Patterns that grow (in a dish). CNLS Newslett. 82, 1–12 (1992)
[6] Budrene E.O., Berg H.C.: Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633 (1991) · doi:10.1038/349630a0
[7] Budrene E.O., Berg H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995) · doi:10.1038/376049a0
[8] Funaki M., Mimura M., Tsujikawa T.: Travelong front solutions arising in the chemotaxis-growth model. Int. Free Bound. 8, 223–245 (2006) · Zbl 1106.35119 · doi:10.4171/IFB/141
[9] Hillen T., Painter K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009) · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[10] Horstmann D.: From 1070 until present: the Keller–Segel model in chemotaxis and its consequences. Jahresber. Dtsch. Math.-Ver. 105, 103–165 (2003) · Zbl 1071.35001
[11] Htoo K.P., Mimura M., Takagi I.: Global solutions to a one-dimensional nonlinear parabolic system modeling colonial formation by chemotactic bacteria. Adv. Stud. Pure Math. 47(2), 613–622 (2007) · Zbl 1145.35066
[12] Kawasaki K., Mochizuki A., Shigesada N.: Mathematical models of pttern formation in bacterial colonies. Control Meas. 34, 1–26 (1995)
[13] Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[14] Mimura M., Sakaguchi H., Matsushita M.: Reaction-diffusion modelling of bacterial colony patterns. Phys. A 282, 283–303 (2000) · Zbl 1178.92012 · doi:10.1016/S0378-4371(00)00085-6
[15] Mimura M., Tsujikawa T.: Aggregataing pattern dynamics in a chemotaxis model including growth. Phys. A 230, 499–543 (1996) · doi:10.1016/0378-4371(96)00051-9
[16] Mittal N., Budrene E.O., Brenner M.P., van Oudenaarden A.: Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. USA 100(23), 13259–13263 (2003) · doi:10.1073/pnas.2233626100
[17] Osaki K., Yagi A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcialaj Ekvacioj 44, 441–469 (2001) · Zbl 1145.37337
[18] Perthame B.: Transport Equations in Biology. Birkhäuser, Basel (2007) · Zbl 1185.92006
[19] Ploezhaev A.A., Pashkov R.A., Lobanov A.I., Petrov I.B.: Spatial patterns formed by chemotactic bacteria Escherichia coli. Int. J. Dev. Biol. 50, 309–314 (2006) · Zbl 1011.92009 · doi:10.1387/ijdb.052048ap
[20] Schaaf R.: Stationary solutions of chemotaxis system. Trans. Am. Math. Soc. 292, 531–556 (1985) · Zbl 0637.35007 · doi:10.1090/S0002-9947-1985-0808736-1
[21] Tsimring L., Levine H., Aranson I., Ben-Jacob E., Cohen I., Shochet O., Reynolds W.N.: Aggregation patterns in stressed bactreria. Phys. Rev. Lett. 75(9), 1859–1862 (1995) · doi:10.1103/PhysRevLett.75.1859
[22] Tyson R., Lubkin S.R., Murray J.D.: A minimal mechanism for bacterial pattern formation. Proc. R. Soc. Lond. B 266, 299–304 (1999) · doi:10.1098/rspb.1999.0637
[23] Woodward D.E., Tyson R., Myerscough M.R., Murray J.D., Budrene E.O., Burg H.C.: Spatio- temporal patterns generated by Salmonella typhimurium. Biophys. J. 68, 2181–2189 (1995) · doi:10.1016/S0006-3495(95)80400-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.