×

An intriguing hybrid synchronization phenomenon of two coupled complex networks. (English) Zbl 1203.93163

Summary: This paper investigates the hybrid synchronization problem of two coupled complex networks. Employing linear feedback and adaptive feedback control methods which are simple, efficient, and easy to implement in practical applications, we obtain some useful criteria of the hybrid synchronization of two coupled networks based on Lyapunov’s stability theory and Lasalle’s invariance principle. It shows that under suitable conditions, two coupled complex networks can realize an intriguing hybrid synchronization: the outer anti-synchronization between the driving network and the response network, and the inner complete synchronization in the driving network and the response network, respectively. Numerical simulations demonstrate the effectiveness of the proposed hybrid synchronization scheme.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93B52 Feedback control
93C40 Adaptive control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 8, 821-824 (1990) · Zbl 0938.37019
[2] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Synchronized firing in coupled inhomogeneous excitable neurons, Phys. Rev. Lett., 76, 1804-1807 (1996)
[3] Li, C.; Chen, G., Synchronization in general complex dynamical networks with coupling delays, Physica A, 343, 263-278 (2004)
[4] Chen, H. K.; Sheu, L. J., The transient ladder synchronization of chaotic systems, Phys. Lett. A, 355, 207-211 (2006)
[5] Rulkov, Nikolai F.; Sushchik, Mikhail M.; Tsimring, Lev S., Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51, 980-994 (1995)
[6] Strogatz, S. H., Exploring complex networks, Nature, 410, 268-276 (2001) · Zbl 1370.90052
[7] Albert, R.; Barabasi, A. L., Statistic mechanics of complex networks, Rev. Modern Phys., 74, 47-91 (2002)
[8] Barabona, Mauricio; Pecorra, Louis M., Synchronization in small-world systems, Phys. Rev. Lett., 29, 054101 (2002)
[9] Watts, Duncan J.; Strogatz, Steven H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442 (1998) · Zbl 1368.05139
[10] Wang, X. F.; Chen, G., Synchronization in small-world dynamical networks, Int. J. Bifur. Chaos, 12, 1, 187-192 (2002)
[11] Gao, Huijun; Lam, James; Chen, Guanrong, New criteria for synchronization stability of general complex dynamical networks with coupling delays, Phys. Lett. A, 360, 263-273 (2006) · Zbl 1236.34069
[12] Dhamala, M.; Jirsa, V. K.; Ding, M., Enhancement of neural synchrony by coupling delay, Phys. Rev. Lett., 92, 7, 074104 (2004)
[13] Jiang, G. P.; Zheng, W. X.; Chen, G., Global chaos synchronization with channel time-delay, Chaos Solitons Fract., 20, 267-275 (2004) · Zbl 1045.34021
[14] Wu, C. W., Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity, 18, 1057-1064 (2005) · Zbl 1089.37024
[15] Wu, C. W.; Chua, L. O., Synchronization in an array of linearly coupled dynamical systems, IEEE Trans. Circ. Syst. I, 42, 8, 430-447 (1995) · Zbl 0867.93042
[16] Pecorra, Louis M.; Carroll, Thomas L., Master stability function for synchronized coupled systems, Phys. Rev. Lett., 9, 2109 (1998), 4
[17] Lu, W.; Chen, T., New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D, 213, 214-230 (2006) · Zbl 1105.34031
[18] Lu, W.; Chen, T.; Chen, Guanrong, Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay, Physica D, 221, 118-134 (2006) · Zbl 1111.34056
[19] Belykh, V.; Belykh, I.; Hasler, M., Connection graph stability method for synchronized coupled chaotic systems, Physica D, 195, 159C187 (2004) · Zbl 1098.82622
[20] Chen, Tianping; Liu, Xiwei; Lu, Wenlian, Pinning complex networks by a single controller, IEEE Trans. Circuits Syst. I-Regular Paper, 54, 6, 1317-1326 (2007) · Zbl 1374.93297
[21] Miller, D.; Kowalski, K.; Lozowski, A., Synchronization and antisynchronization of Chua’s oscillators via a piecewise linear coupling circuit, Chaos, 5, 458-462 (1999)
[22] Wedekind, I.; Parlitz, U., Experimental observation of synchronization and anti-synchronization of chaotic low-frequency-fluctuations in external cavity semiconductor laser, Int. J. Bifur. Chaos, 11, 1141-1147 (2001)
[23] Hu, J.; Chen, S.; Chen, L., Adaptive control for antisynchronization of Chua’s chaotic system, Phys. Lett. A, 339, 455-460 (2005) · Zbl 1145.93366
[24] Guo-Hui, Li, Synchronization and anti-synchronization of Colpitts oscillators using active control, Chaos Solitons Fract., 26, 87-93 (2005) · Zbl 1122.34320
[25] Li, W. L.; Chen, X. Q.; Shen, Z. P., Anti-synchronization of two different chaotic systems, Physica A, 387, 3747-3750 (2008)
[26] Li, C. D.; Liao, X. F., Anti-synchronization of a class of coupled chaotic systems via linear feedback control, Int. J. Bifur. Chaos, 16, 4, 1041-1047 (2006) · Zbl 1097.94037
[27] Meng, J.; Wang, X., Robust antisynchronization of a class of delayed chaotic neural networks, Chaos, 17, 023113 (2007) · Zbl 1159.37371
[28] Zhu, H. B.; Cui, B. T., The antisynchronization of a class of chaotic delayed neural networks, Chaos, 17, 043122 (2007) · Zbl 1163.37392
[29] Li, Rui-hong, A special full-state hybrid projective synchronization in symmetrical chaotic systems, Appl. Math. Comp., 200, 321-329 (2008) · Zbl 1152.65117
[30] Yau, H.-T., Synchronization and anti-synchronization coexist in two-degree-of-freedom dissipative gyroscope with nonlinear inputs, Nonlinear Anal.: Real World Appl., 9, 2253-2261 (2008) · Zbl 1156.34331
[31] Chen, J.-H.; Chen, H.-K.; Lin, Y.-K., Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems, Chaos Solitons Fract., 39, 707-716 (2009) · Zbl 1197.37003
[32] Khalil, Hassan K., Nonlinear Systems (1996), Prentice-Hall: Prentice-Hall Upper Saddle River, New Jersy, 07458 · Zbl 0842.93033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.