×

On the normal index and the \(c\)-section of maximal subgroups of a finite group. (English) Zbl 1203.20028

Let \(G\) a finite group and \(M\) a maximal subgroup of \(G\); the normal index of \(M\) in \(G\), denoted by \(\eta(G:M)\), is the order of a chief factor \(H/K\) such that \(H\) is a minimal supplement of \(M\) in \(G\). If \(H/K\) is such a chief factor then \(G=MH\), \(K\leq M\) and \((M\cap H)/K\) is called a \(c\)-section of \(M\). Finally if \(p\in\pi(G)\) then \(\mathcal F_p(G)\) is the set of maximal subgroups \(M\) of \(G\) such that \((|G:M|,p)=1\) and \(\mathcal F^p(G)\) is the set of maximal subgroups \(M\) of \(G\) such that \(N_G(P)\leq M\), where \(P\in\mathrm{Syl}_p(G)\).
Among other results the authors prove the following: Theorem 3.1. A group \(G\) is solvable if and only if \(\eta(G:M)_2=1\) for every \(M\in\mathcal F^2(G)\).
Theorem 3.4. A group \(G\) is solvable if and only if a \(c\)-section of \(M\) is either a \(2'\)-group or an Abelian \(2\)-group for every \(M\in\mathcal F^2(G)\).
Theorem 3.8. Let \(G\) be a group and \(p\in\pi(G)\). Then \(G\) is solvable if and only if \(\eta(G:M)\) is a power of a prime for every \(M\in\mathcal F_p(G)\).

MSC:

20E28 Maximal subgroups
20D40 Products of subgroups of abstract finite groups
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20D15 Finite nilpotent groups, \(p\)-groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/0022-4049(90)90150-G · Zbl 0699.20016 · doi:10.1016/0022-4049(90)90150-G
[2] Deskins W. E., Proc. Symp. Pure Math. 1 pp 100– (1959)
[3] DOI: 10.1016/S0022-4049(02)00327-4 · Zbl 1028.20014 · doi:10.1016/S0022-4049(02)00327-4
[4] DOI: 10.1016/S0022-4049(99)00060-2 · Zbl 0965.20012 · doi:10.1016/S0022-4049(99)00060-2
[5] DOI: 10.1080/00927879608825696 · Zbl 0855.20017 · doi:10.1080/00927879608825696
[6] DOI: 10.1081/AGB-120027851 · Zbl 1057.20017 · doi:10.1081/AGB-120027851
[7] DOI: 10.1016/0021-8693(87)90223-7 · Zbl 0632.20011 · doi:10.1016/0021-8693(87)90223-7
[8] DOI: 10.1112/jlms/s2-31.2.250 · Zbl 0573.20004 · doi:10.1112/jlms/s2-31.2.250
[9] DOI: 10.1112/plms/s3-65.2.297 · Zbl 0776.20012 · doi:10.1112/plms/s3-65.2.297
[10] Mukherjee N. P., Pacific J. Math. 132 pp 143– (1988)
[11] DOI: 10.2307/2047369 · Zbl 0673.20010 · doi:10.2307/2047369
[12] DOI: 10.1006/jabr.2000.8268 · Zbl 0964.20010 · doi:10.1006/jabr.2000.8268
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.